吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 311-317.doi: 10.13229/j.cnki.jdxbgxb201402006

• 论文 • 上一篇    下一篇

双模式机电复合传动系统综合控制策略

郑海亮, 项昌乐, 王伟达, 韩立金, 张东好   

  1. 北京理工大学 机械与车辆学院, 北京 100081
  • 收稿日期:2012-10-17 出版日期:2014-02-01 发布日期:2014-02-01
  • 作者简介:郑海亮(1985- ),男,博士研究生.研究方向:混合动力车辆控制.E-mail:hailiang_bit@hotmail.com
  • 基金资助:

    国家自然科学基金项目(51005017).

Design and validation of control strategy for Dual-mode Electro-mechanical Transmission

ZHENG Hai-liang, XIANG Chang-le, WANG Wei-da, HAN Li-jin, ZHANG Dong-hao   

  1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2012-10-17 Online:2014-02-01 Published:2014-02-01

摘要:

为了实现双模式机电复合传动系统的能量管理与控制,开展了系统综合控制策略的研究。在分析双模式机电复合传动系统机构特点的基础上,提出了在保证动力性的前提下改善燃油经济性为主要目标的控制策略,实现传动系统工作模式判断与切换以及系统不同能量源间的协调控制。开发了基于dSPACE的双模式机电复合传动控制策略硬件在环仿真平台,对该控制策略下的车辆性能进行了评价。仿真结果表明,开发的双模式机电复合传动系统控制策略实现了整车系统的能量管理与控制,优化了发动机的工作点,改善了车辆的燃油经济性。

关键词: 车辆工程, 双模式, 机电复合传动, 控制策略, 硬件在环仿真

Abstract:

In order to achieve the energy management and control of the dual-mode electro-mechanical transmission system, a comprehensive control strategy is studied. After the analysis of the structural characteristics of the dual-mode electro-mechanical transmission system, a control strategy for improving the fuel economy is proposed. This strategy can realize the operating mode judgment of transmission system and the coordinated control between the different energy sources. Based on dSPACE system, the hardware-in-loop simulation platform is developed to evaluate the control strategy of the dual-mode electro-mechanical transmission. The simulation results indicate that the proposed control strategy can realize the energy management and control of hybrid vehicles, the optimization of the engine operating point and the improvement of the vehicle fuel economy.

Key words: vehicle engineering, dual-mode, electro-mechanical transmission, control strategy, hardware-in-the-loop simulation

中图分类号: 

  • U469.72

[1] Chan C C. The state of the art of electric and hybrid vehicles[J]. Proceedings of IEEE, 2002, 90(2): 247-275.

[2] Tate E, Harpster M, Savagian P. The electrification of the automobile: from conventional hybrid, to plug-in hybrid, to extended-range electric vehicles[C]//SAE Paper, 2008-01-0458.

[3] Liu J M, Peng H. Modeling and control of a power-split hybrid vehicle[J]. IEEE Transactions on Control Systems Technology, 2008, 16(6):1242-1251.

[4] Conlon B. Comparative analysis of single and combined hybrid electrically variable transmission operating modes[C]//SAE Paper, 2005-01-1162.

[5] Kim N, Kim J, Kim H. Control strategy for a dual-mode electro-mechanical, infinitely variable transmission for hybrid electric vehicles[J]. Journal of Automobile Engineering, 2008, 222(9):1587-1601.

[6] Michal R, Donald K. Two-mode, compound-split, vehicular transmission having both enhanced speed and enhanced tractive power[P]. USA:6090005, 2000-07-18.

[7] Alan G, Michael R. Hybrid electric powertrain including a two-mode electrically variable transmission[P]. USA:6478705B1, 2002-11-12.

[8] 韩立金, 项昌乐, 刘辉, 等. 双模式混合驱动装置电机参数匹配[J]. 吉林大学学报:工学版, 2011, 41(6):1527-1531. Han Li-jin, Xiang Chang-le, Liu Hui, et al. Motor matching of the dual-mode hybrid transmission[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(6): 1527-1531.

[9] Jeongmin K, Talchol K, Byungsoon M, et al. Mode control strategy for a two-mode hybrid electric vehicle using electrically variable transmission (EVT) and fixed-gear mode[J]. IEEE Transaction on Vehicular Technology, 2011, 60(3):793-803.

[10] 王伟达, 项昌乐, 刘辉, 等. 混联式混合动力系统多能源综合控制策略[J]. 哈尔滨工业大学学报, 2012, 44(1):138-143. Wang Wei-da, Xiang Chang-le, Liu Hui, et al. Design and validation of hybrid control strategy for parallel-series HEV[J]. Journal of Harbin Institute of Technology, 2012, 44(1):138-143.

[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[14] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!