吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1349-1359.doi: 10.13229/j.cnki.jdxbgxb20170705

• • 上一篇    下一篇

基于二次规划的分布式电动汽车稳定性控制

金立生1, 谢宪毅1, 高琳琳2, 郭柏苍1   

  1. 1.吉林大学 交通学院,长春130022;
    2.常熟理工学院 汽车工程学院,江苏 常熟215500
  • 收稿日期:2017-07-05 出版日期:2018-09-20 发布日期:2018-12-11
  • 作者简介:金立生(1975-),男,教授,博士生导师.研究方向:汽车安全与智能车辆导航技术.E-mail:jinls@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51575229);国家重点研发计划项目(2016YFB0100900);中央高校基本科研业务费专项项目;吉林大学国家杰出青年基金后备人选培育计划项目

Distributed electric vehicle stability control based on quadratic programming

JIN Li-sheng1, XIE Xian-yi1, GAO Lin-lin2, GUO Bai-cang1   

  1. 1.College of Transportation, Jilin University, Changchun 130022, China;
    2.College of Automobile Engineering, Changshu Institute of Technology, Changshu 215500,China
  • Received:2017-07-05 Online:2018-09-20 Published:2018-12-11

摘要: 为了减少稳定性控制中车速降低程度,降低轮胎纵向力利用率,本文基于分布式电动汽车平台,通过二次规划的方法分配各个车轮所需的纵向力,优先基于轮毂电机输出驱动力/制动力来实现横摆力矩分配。当所需横摆力矩超过轮毂电机的最大转矩时,启动液压制动系统进行补偿。双移线试验仿真结果表明,相比于传统差动制动控制系统,基于二次规划的稳定性控制系统与理想车速之间的误差保持在1 km/h以内,车速降低82.25%,平均每个轮胎力纵向利用率下降9.71%。该稳定性控制系统能够提升车辆操控稳定性和安全性,并且在加速/减速工况下具有较好的鲁棒性。

关键词: 车辆工程, 分布式电动汽车, 二次规划, 横摆力矩分配, 操控稳定性

Abstract: In order to reduce the degree of speed reduction in the stability control and the longitudinal force utilization of the tires, the longitudinal force of each wheel is assigned by the secondary programming method based on the distributed electric vehicle platform. The yaw moment distribution based on the wheel motor output driving/braking force is preferred. When the required yaw moment exceeds the maximum torque of the wheel motors, the hydraulic brake system is activated to compensate. The results of Double Lane Change (DLC) simulation test demonstrate that, compared with the differential braking control system, the error between distributed electric vehicle stability control system and the ideal vehicle speed is kept within 1 km/h, the vehicle speed decreases by 82.25%, and the average tire force utilization rate is reduced by 9.71%. The stability control system can improve the stability and the safety of the driving vehicle. Under the acceleration/deceleration conditions, it provides good robustness.

Key words: vehicle engineering, distributed electric vehicle, quadratic programming, distribution of yaw moment, handling stability

中图分类号: 

  • U461.1
[1] Nakazawa M, Isobe O, Takahashi S, et al.Braking force distribution control for improved vehicle dynamics and brake performance[J]. Vehicle System Dynamics, 1995, 24(4/5): 413-426.
[2] He J, Crolla D A, Levesley M C, et al.Coordination of active steering, driveline, and braking for integrated vehicle dynamics control[J]. Journal of Automobile Engineering, 2006, 220(10): 1401-1420.
[3] Li M, Jia Y, Matsuno F.Attenuating diagonal decoupling with robustness for velocity-varying 4WS vehicles[J]. Control Engineering Practice, 2016, 56: 49-59.
[4] Tavasoli A, Naraghi M, Shakeri H.Optimized coordination of brakes and active steering for a 4WS passenger ca[J]. ISA Transactions, 2012, 51(5): 573-583.
[5] Yin G, Wang S, Jin X.Optimal slip ratio based fuzzy control of acceleration slip regulation for four-wheel independent driving electric vehicles[J]. Mathematical Problems in Engineering, 2013(11) :1-7.
[6] Doumiati M, Sename O, Dugard L, et al.Integrated vehicle dynamics control via coordination of active front steering and rear braking[J]. European Journal of Control, 2013, 19(2): 121-143.
[7] Mousavinejad E, Han Q L, Yang F, et al.Integrated control of ground vehicles dynamics via advanced terminal sliding mode control[J]. Vehicle System Dynamics, 2017, 55(2): 268-294.
[8] Yim S, Kim S, Yun H.Coordinated control with electronic stability control and active front steering using the optimum yaw moment distribution under a lateral force constraint on the active front steering[J]. Journal of Automobile Engineering, 2016, 230(5): 581-592.
[9] Hori Y.Future vehicle driven by electricity and control-research on four-wheel-motored" UOT Electric March II"[J]. IEEE Transactions on Industrial Electronics, 2004, 51(5): 954-962.
[10] Lin C, Cheng X.A traction control strategy with an efficiency model in a distributed driving electric vehicle[J]. The Scientific World Journal, 2014,2014:261085.
[11] Sakai S, Sado H, Hori Y.Motion control in an electric vehicle with four independently driven in-wheel motors[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(1): 9-16.
[12] Geng C, Mostefai L, Denaï M, et al.Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observe[J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1411-1419.
[13] Chen Y, Wang J.Design and evaluation on electric differentials for overactuated electric ground vehicles with four independent in-wheel motors[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1534-1542.
[14] Liu H, Chen X, Wang X.Overview and prospects on distributed drive electric vehicles and its energy saving strategy[J]. Prz Elektrotech, 2012, 88: 122-125.
[15] 张金柱,张洪田,孙远涛. 电动汽车稳定性的横摆力矩控制[J]. 电机与控制学报,2012,16(6):75-80.
Zhang Jin-zhu, Zhang Hong-tian, Sun Yuan-tao.The direct yaw control of electric vehicle stability control[J].Electric Machines and Control, 2012, 16(6):75-80.
[16] 石志潇. 电动汽车电液复合制动系统转弯稳定性控制研究[D].南京:南京航空航天大学能源与动力学院,2015.
Shi Zhi-xiao.Research on cornering stability control of electric vehicle based on electric-hydraulic brake system[D].Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2015.
[17] 绳辰. 轮毂电机驱动电动汽车纵向稳定性控制研究[D].北京:北京交通大学机械与电子控制工程学院,2014.
Sheng Chen.Study on longitudinal stability of in-wheel motor vehicle[D].Beijing: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 2014.
[18] 滕冬冬. 轮毂电机电动汽车再生制动与稳定性控制研究[D].合肥:合肥工业大学汽车与交通工程学院,2016.
Teng Dong-dong.Study on regenerative braking and stability control for in-wheel motor driven electric vehicle [D]. Hefei: School of Machinery and Automobile Engineering, Hefei University of Technology, 2016.
[19] Amodeo M, Ferrara A, Terzaghi R, et al.Wheel slip control via second-order sliding-mode generation[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 122-131.
[20] Cho K, Kim J, Choi S.The integrated vehicle longitudinal control system for ABS and TCS[C]∥Control Applications (CCA), IEEE, 2012: 1322-1327.
[21] Tanelli M, Ferrara A.Wheel slip control of road vehicles via switched second order sliding modes[J]. International Journal of Vehicle Design, 2013, 62(2-4): 231-253.
[22] Drakunov S, Ozguner U, Dix P, et al.ABS control using optimum search via sliding modes[J]. IEEE Transactions on Control Systems Technology, 1995, 3(1): 79-85.
[23] 高琳琳,金立生,郑义,等.四轮转向车辆的径向基函数神经网络复合控制器设计[J].吉林大学学报:工学版,2016,46(2):366-372.
Gao Lin-lin, Jin Li-sheng, Zheng Yi, et al.Design of radial basis function neural network compound controller for four wheel steering vehicle[J].Journal of Jilin University(Engineering and Technology Edition), 2016,46(2):366-372.
[24] 魏朗. 用于碰撞事故中车辆动力学模拟的轮胎模型分析[J]. 西安公路交通大学学报,1999(2):73-76.
Wei Lang.An analysis of vehicle dynamic simulating tire model used in collisions accidents[J]. Journal of Xi'an Highway University, 1999(2):73-76.
[25] 杜峰. 基于线控技术的四轮主动转向汽车控制策略仿真研究 [D]. 西安: 长安大学汽车学院, 2009.
Du Feng.Simulation research on control strategies for active 4WS vehicle based on the steer-by-wire technology [D]. Xi'an: School of Automobile, Chang'an University, 2009.
[26] Jin L, Xie X, Shen C, et al.Study on electronic stability program control strategy based on the fuzzy logical and genetic optimization method[J]. Advances in Mechanical Engineering, 2017, 9(5): 1687814017699351.
[27] Petersen J A M, Bodson M. Constrained quadratic programming techniques for control allocation[J]. IEEE Transactions on Control Systems Technology, 2006, 14(1): 91-98.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[12] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[13] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[14] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[15] 于亮, 李和言, 马彪, 李慧珠, 李明阳. 多片离合器轴向平均比压的衰减特性[J]. 吉林大学学报(工学版), 2018, 48(4): 990-997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭其渊,徐进,郑升宝,邵毅明,邓天民. 隧道洞口路面两种材料交替对行车的影响及交替位置优化[J]. 吉林大学学报(工学版), 2009, 39(06): 1497 -1503 .
[2] 王昕,姜继海. 轮边驱动液压混合动力车辆再生制动控制策略[J]. 吉林大学学报(工学版), 2009, 39(06): 1544 -1549 .
[3] 武剑,董惠娟,张松柏,张广玉. 压电超声换能器初级串联匹配新方法[J]. 吉林大学学报(工学版), 2009, 39(06): 1641 -1645 .
[4] 郑文忠, 万夫雄, 李时光. 用无机胶粘贴CFRP布加固混凝土板火灾后受力性能[J]. 吉林大学学报(工学版), 2010, 40(05): 1244 -1249 .
[5] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[6] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[7] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[8] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[9] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[10] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .