吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1272-1281.doi: 10.13229/j.cnki.jdxbgxb.20210952

• 车辆工程·机械工程 • 上一篇    

基于有限时间扩张状态观测的HEV鲁棒复合协调控制

汪少华1(),储堃1,施德华1,2(),殷春芳3,李春4   

  1. 1.江苏大学 汽车工程研究院,江苏 镇江,212013
    2.汽车零部件先进制造技术教育部重点实验室(重庆理工大学),重庆 400054
    3.江苏大学 电气信息工程学院,江苏 镇江,212013
    4.金龙联合汽车工业(苏州)有限公司,江苏 苏州 215026
  • 收稿日期:2021-09-23 出版日期:2023-05-01 发布日期:2023-05-25
  • 通讯作者: 施德华 E-mail:wsh@ujs.edu.cn;dhshi@ujs.edu.cn
  • 作者简介:汪少华(1978-),男,教授,博士.研究方向:车辆动态性能模拟与控制.E-mail:wsh@ujs.edu.cn
  • 基金资助:
    国家自然科学基金项目(51905219);江苏省自然科学基金项目(BK20190844);青年人才托举工程项目(2020QNRC001);镇江市重点研发计划项目(GY2020020);汽车零部件先进制造技术教育部重点实验室开放课题基金项目(2020KLMT05)

Robust compound coordinated control of HEV based on finite⁃time extended state observation

Shao-hua WANG1(),Kun CHU1,De-hua SHI1,2(),Chun-fang YIN3,Chun LI4   

  1. 1.Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,China
    2.Key Laboratory of Advanced Manufacture Technology for Automobile Parts(Chongqing University of Technology),Ministry of Education,Chongqing 400054,China
    3.School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China
    4.Higer Bus Company Limited,Suzhou 215026,China
  • Received:2021-09-23 Online:2023-05-01 Published:2023-05-25
  • Contact: De-hua SHI E-mail:wsh@ujs.edu.cn;dhshi@ujs.edu.cn

摘要:

针对采用双行星排动力耦合机构的混合动力汽车(HEV),研究其纯电动模式至混合动力驱动模式切换过程,为减小由发动机转矩波动和行驶工况扰动导致的模式切换动态性能恶化,提出了基于有限时间扩张状态观测的鲁棒复合协调控制策略。分析模式切换过程并建立各切换阶段的系统动力学模型,针对造成模式切换冲击的切换阶段,设计基于有限时间稳定理论的扩张状态观测器估计发动机转矩和负载转矩扰动,在此基础上,构建基于观测状态的前馈补偿策略,并设计基于状态反馈的鲁棒H控制器,从而实现模式切换过程的鲁棒复合协调控制。仿真结果表明:有限时间扩张状态观测器有效提高了对发动机和负载转矩扰动的观测精度,优化了发动机转速的控制效果,基于有限时间扩张状态观测的鲁棒复合协调控制策略可有效克服车辆外界扰动的影响,显著减小HEV模式切换过程的冲击度。

关键词: 车辆工程, 混合动力汽车, 模式切换, 有限时间扩张状态观测, 鲁棒复合控制, 稳定性

Abstract:

Aiming at the hybrid electric vehicle that adopts the dual planetary power coupling mechanism, the transient mode switching process from pure electric mode to hybrid driving mode is studied. In order to reduce the deterioration of the system dynamic performance caused by the engine torque fluctuation and the driving condition during the transient mode switching process, the robust compound coordinated strategy based on the finite-time extended state observer is proposed. Firstly, the mode switching process is analyzed and the system dynamic models for each switching stage are established. Then, aiming at the stages that cause large mode switching jerk, the extended state observer is designed to estimate the disturbance of the engine and load torque based on the finite time stability theory. On this basis, the feed-forward compensation strategy is constructed and the robust H controller based on the state feed-back control is designed to realize the robust compound coordinated control. Simulation results demonstrate that the finite time extended state observer improves the observation accuracy of the engine torque and load torque disturbances effectively, as well as the engine speed tracking performance. The proposed robust compound controller based on the finite-time extended state observation can reduce the influence of the vehicle external disturbance on the HEV mode switching effectively, and reduce the mode switching impact significantly.

Key words: vehicle engineering, hybrid electric vehicle, mode switching, finite-time extended state observation, robust compound control, stability

中图分类号: 

  • U463.2

图1

动力系统结构简图"

表1

典型工作模式"

工作模式发动机MG1MG2CR1CR2CB1CB2
纯电动1分离分离结合结合
纯电动2分离结合结合分离
发动机启动分离分离结合结合
混合驱动1结合分离分离结合
混合驱动2结合结合分离分离

图2

工作阶段及切换条件"

图3

模式切换控制框图"

表2

HEV关键部件参数"

参 数数值
整备质量M/kg1398
车轮半径R w /m0.287
空气阻力系数Cd0.3
迎风面积Af/m21.746
主减速器速比i03.93
前、后行星排特征参数k1、k21.842,2.48
发动机最大转速ωEmax/(r·min-14700
发动机峰值功率PEmax/kW54
MG1转速ωGmax/(r·min-18000
MG1峰值功率PGmax/kW15
MG2转速ωMmax/(r·min-112 000
MG2峰值功率PMmax/kW30

表3

状态观测器关键参数"

项 目参数数值

纯电动、发动机启动和

CB1分离阶段

λ12
L198
L27580
m10.96
m20.92
CR1滑摩阶段λ22
L399
L47950
m30.96
m40.92
混合驱动模式λ32
L595
L65000
m50.96
m60.92

图4

发动机端干扰估计误差值"

图5

输出端负载干扰估计误差值"

图6

冲击度"

图7

发动机转速响应曲线"

图8

电机转矩响应曲线"

1 胡云峰, 麻宝林, 林佳眉, 等.混合动力汽车的发动机最优运行曲线在线优化方法[J].吉林大学学报: 工学版, 2022, 52(7): 1679-1686.
Hu Yun-feng, Ma Bao-lin, Lin Jia-mei, et al. Online optimization method of hybrid electric vehicle's engine optimal operating line[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1679-1686.
2 Geetha A, Subramani C. A comprehensive review on energy management strategies of hybrid energy storage system for electric vehicles[J]. International Journal of Energy Research, 2017, 41(13): 1817-1834.
3 Zhu F T, Chen L, Yin C L, et al. Dynamic modelling and systematic control during the mode transition for a multi-mode hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227(7): 1007-1023.
4 Lin Y, Qin D, Liu Y, et al. Control strategy for all the mode-switches of hybrid electric vehicle[J]. Advances in Mechanical Engineering, 2016, 8(11): 1731-1747.
5 王庆年, 冀尔聪, 王伟华, 等.并联混合动力汽车模式切换过程的协调控制[J].吉林大学学报: 工学版, 2008, 38(1): 1-6.
Wang Qing-nian, Ji Er-cong, Wang Wei-hua, et al. Coordinated control for mode-switch of parallel hybrid electric vehicle[J]. Journal of Jilin University(Engineering and Techology Edition), 2008, 38(1): 1-6.
6 赵治国, 代显军, 王晨, 等.复合功率分流混合电动轿车驱动模式切换的协调控制[J].汽车工程, 2015, 37(3): 260-265.
Zhao Zhi-guo, Dai Xian-jun, Wang Chen, et al. Coordinated control of driving mode switching of compound power-split hybrid electric car[J]. Journal of Automobile Engineering, 2015, 37(3): 260-265.
7 Oh J, Choi S B, Chang Y J, et al. Engine clutch torque estimation for parallel-type hybrid electric vehicles[J]. International Journal of Automotive Technology, 2017, 18(1): 125-135.
8 Elzaghir W, Zhang Y, Natarajan N, et al. Model reference adaptive control for hybrid electric vehicle with dual clutch transmission configurations[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 991-999.
9 王永强, 付主木, 宋书中, 等.并联混合动力汽车模式切换快速终端滑模控制[J].河南科技大学学报: 自然科学版, 2020, 41(5): 18-25.
Wang Yong-qiang, Fu Zhu-mu, Song Shu-zhong, et al. Mode switching fast terminal sliding mode control for parallel hybrid electric vehicle[J]. Journal of Henan University of Science and Technology(Natural Science Edition), 2020, 41(5): 18-25.
10 汪佳佳, 蔡英凤, 陈龙, 等.基于扩张状态观测器估计的混合动力汽车协调控制[J].浙江大学学报: 工学版, 2021, 55(7): 1225-1233.
Wang Jia-jia, Cai Ying-feng, Chen Long, et al. Research on mode switching compensation control of hybrid electric vehicle based on extended state observer estimation[J]. Journal of Zhejiang University(Engineering Edition), 2021, 55(7): 1225-1233.
11 Du H B, Li S H. Finite-time attitude stabilization for a spacecraft using homogeneous method[J]. Journal of Guidance, Control and Dynamics, 2012, 35(3): 740-748.
12 Bhat S P, Bemstein D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control Optimization, 2000, 38(3): 751-766.
13 Shi D H, Pisa P, Chen L, et al. Control design and fuel economy investigation of power split HEV with energy regeneration of suspension[J]. Applied Energy, 2016, 182: 576-589.
14 Flávio A F, Edvaldo A, Marcelo C M T, et al. Robust state-derivative feedback LMI-based designs for linear descriptor systems[J]. Mathematical Problems in Engineering, 2009, 2010: 1-15.
15 刘凯, 杨冬梅.参数不确定离散广义系统的H2/H优化控制[J].吉林大学学报: 理学版, 2012, 50(2): 237-243.
Liu Kai, Yang Dong-mei. H2/H optimal control for discrete singular systems with parameter uncertainties[J]. Journal of Jilin University(Science Edition), 2012, 50(2): 237-243.
[1] 陈磊,王杨,董志圣,宋亚奇. 一种基于转向意图的车辆敏捷性控制策略[J]. 吉林大学学报(工学版), 2023, 53(5): 1257-1263.
[2] 陈小波,陈玲. 定位噪声统计特性未知的变分贝叶斯协同目标跟踪[J]. 吉林大学学报(工学版), 2023, 53(4): 1030-1039.
[3] 赵睿,李云,胡宏宇,高镇海. 基于V2I通信的交叉口车辆碰撞预警方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1019-1029.
[4] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[5] 何科,丁海涛,许男,郭孔辉. 基于摄像头和车道线的增强定位系统[J]. 吉林大学学报(工学版), 2023, 53(3): 663-673.
[6] 朱冰,范天昕,赵健,张培兴,孙宇航. 基于危险边界搜索的自动驾驶系统加速测试方法[J]. 吉林大学学报(工学版), 2023, 53(3): 704-712.
[7] 田彦涛,季言实,唱寰,谢波. 深度强化学习智能驾驶汽车增广决策模型[J]. 吉林大学学报(工学版), 2023, 53(3): 682-692.
[8] 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734.
[9] 张建,刘金波,高原,刘梦可,高振海,杨彬. 基于多模交互的车载传感器定位算法[J]. 吉林大学学报(工学版), 2023, 53(3): 772-780.
[10] 何科,丁海涛,赖宣淇,许男,郭孔辉. 基于Transformer的轮式里程计误差预测模型[J]. 吉林大学学报(工学版), 2023, 53(3): 653-662.
[11] 刘嫣然,孟庆瑜,郭洪艳,李嘉霖. 图注意力模式下融合高精地图的周车轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 792-801.
[12] 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725.
[13] 田彦涛,许富强,王凯歌,郝子绪. 考虑周车信息的自车期望轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 674-681.
[14] 高松,王玉琼,王玉海,徐艺,周英超,王鹏伟. 智能汽车纵横向整体反馈线性化控制[J]. 吉林大学学报(工学版), 2023, 53(3): 735-745.
[15] 王登峰,陈宏利,那景新,陈鑫. 单双搭接接头经高温老化后的失效对比[J]. 吉林大学学报(工学版), 2023, 53(2): 346-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!