吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1338-1344.doi: 10.13229/j.cnki.jdxbgxb.20210937

• 材料科学与工程 • 上一篇    

AA6061⁃T6铝薄板无针搅拌摩擦点焊接头结构及性能分析

于贵申(),陈鑫(),武子涛,陈轶雄,张冠宸   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2021-09-17 出版日期:2023-05-01 发布日期:2023-05-25
  • 通讯作者: 陈鑫 E-mail:yugs18@mails.jlu.edu.cn;cx@jlu.edu.cn
  • 作者简介:于贵申(1992-),男,博士研究生.研究方向:汽车车身结构轻量化连接.E-mail:yugs18@mails.jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFB250350-3);吉林省校合作项目(SXGJSF2017-2-1-5);吉林大学研究生创新研究计划项目(101832020CX128)

Analysis of microstructure and mechanical properties of probeless friction stir spot welding joint in AA6061⁃T6 aluminum thin plate

Gui-shen YU(),Xin CHEN(),Zi-tao WU,Yi-xiong CHEN,Guan-chen ZHANG   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2021-09-17 Online:2023-05-01 Published:2023-05-25
  • Contact: Xin CHEN E-mail:yugs18@mails.jlu.edu.cn;cx@jlu.edu.cn

摘要:

以车身覆盖件用1.5 mm厚AA6061-T6铝薄板为研究对象,采用Box-Behnken试验设计分析了不同焊接参数对无针搅拌摩擦点焊(PFSSW)接头力学性能及断裂模式的影响规律。通过响应面方法(RSM)对PFSSW接头的拉剪性能进行优化。结果表明:焊点的金相呈现“盆形”结构,当搅拌头转速为2950 r/min、下压量为0.6 mm和停留时间为7 s时,接头的最高拉剪失效载荷为6.41 kN。PFSSW焊点断口呈现3种断裂模式。其中,焊核拔出模式下接头的平均失效载荷最高(6.26 kN),界面分离断裂模式最低(4.89 kN),混合断裂模式居中(5.60 kN)。

关键词: 车辆工程, 无针搅拌摩擦点焊, 拉剪失效载荷, 参数优化, 微观结构, 断口形貌

Abstract:

The effect of welding parameters on the tensile-shear mechanical properties and the fracture modes of probeless friction stir spot welding(PFSSW) joints was analyzed by Box-Behnken test design. The base material is 1.5 mm thick AA6061-T6 aluminum thin plate, which is commonly used in automobile body coverings. The tensile shear performance of PFSSW joints was optimized by response surface methodology(RSM). The results show that the metallographic structure of PFSSW joint is basin-shaped. The maximum tensile-shear failure load(TSFL) of 6.41 kN was obtained with the rotating speed of 2950 r/min, the plunging depth of 0.6 mm and the dwell time of 7 s. There are three types of PFSSW joint fracture modes. Among them, the nugget pull-out mode exhibited the highest average failure load(6.26 kN), interface separation mode was the lowest(4.89 kN) and mixed-mode was in the middle(5.60 kN).

Key words: vehicle engineering, probeless friction stir spot welding, tensile-shear failure load, parameters optimization, microstructure, fracture morphology

中图分类号: 

  • U465.2

图1

拉剪试样的加工与装夹"

图2

无针搅拌头的形状及尺寸(mm)"

表1

焊接参数及其水平"

焊接参数符号参数水平
低(-1)中(0)高(-1)
转速/(r·min-1RS250030003500
下压量/mmPD0.30.50.7
停留时间/sDT579

图3

拉剪接头的配置及试样尺寸(mm)"

图4

PFSSW焊点的金相结构"

表2

Box-Behnken设计矩阵及试验结果"

编号编码值实际值TSFL /kN
RSPDDTRS/(r·min-1PD/mmDT/s
1#01130000.795.99
2#1-1035000.375.09
3#-10125000.595.35
4#-10-125000.556.15
5#01-130000.755.97
6#-1-1025000.375.09
7#0-1-130000.355.30
8#10135000.595.66
9#00030000.576.50
10#10-135000.555.01
11#0-1130000.394.41
12#-11025000.775.73
13#00030000.576.24
14#00030000.576.47
15#00030000.576.08
16#11035000.775.96
17#00030000.576.17

表3

接头拉剪失效载荷二次多项式模型的方差分析结果"

方差来源自由度均方FP
总和16---
模型90.569.590.003
RS10.040.770.41
PD11.7730.090.001
DT10.132.210.18
RS×PD10.528.770.021
RS×DT10.9516.160.005
PD×DT10.6711.450.012
RS210.010.230.65
PD210.538.950.02
DT210.213.520.103
残差70.06--
失拟项30.092.650.185
纯误差40.03--

图5

拉剪失效载荷预测值与实验值的比较"

图6

焊接参数对拉剪失效载荷的影响"

图7

焊点的宏观断裂模式"

图8

三种断裂模式下的平均失效载荷"

1 Paidar M, Ramalingam V V, Moharrami A, et al. Development and characterization of dissimilar joint between AA2024-T3 and AA6061-T6 by modified friction stir clinching process[J]. Vacuum, 2020, 176: 109298.
2 聂昕, 朱伟强, 蔡洪丰, 等.基于焊点载荷的焊接工艺参数优化[J].焊接学报,2018,39(5):114-120, 134.
Nie Xin, Zhu Wei-qiang, Cai Hong-feng, et al. Optimization of resistance spot welding parameters based on load of welding spot[J]. Transactions of the China Welding Institution, 2018, 39(5): 114-120, 134.
3 Zhang B, Chen X, Pan K, et al. J-integral based correlation evaluation between microstructure and mechanical strength for FSSW joints made of automotive aluminum alloys[J]. Journal of Manufacturing Processes, 2019, 44: 62-71.
4 Zhang B, Chen X, Pan K, et al. Thermo-mechanical simulation using microstructure-based modeling of friction stir spot welded AA 6061-T6[J]. Journal of Manufacturing Processes, 2019, 37: 71-81.
5 陈鑫, 潘凯旋, 张彪, 等. 搅拌摩擦点焊瞬态输入组合热源模型[J]. 吉林大学学报: 工学版, 2020, 50(4): 1316-1323.
Chen Xin, Pan Kai-xuan, Zhang Biao, et al. Transient input combined heat source model of friction stir spot welding[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1316-1323.
6 Ikumapayi O M, Akinlabi E T. Recent advances in keyhole defects repairs via refilling friction stir spot welding[J]. Materials Today-Proceedings, 2019, 18: 2201-2208.
7 Suryanarayanan R, Sridhar V. Effect of process parameters in pinless friction stir spot welding of Al 5754-Al 6061 alloys[J]. Metallography, Microstructure, Analysis, 2020, 9(2): 261-272.
8 Li W Y, Chu Q, Yang X W, et al. Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy[J]. Journal of Materials Processing Technology, 2018, 252: 69-80.
9 Chu Q, Yang X W, Li W Y, et al. Impact of surface state in probeless friction stir spot welding of an Al-Li alloy[J]. Science and Technology of Welding and Joining, 2019, 24(3): 200-208.
10 Chu X, Yin M, Gao J, et al. Effects of shoulder geometry on microstructures and mechanical properties of probeless friction stir spot welded aluminum 7075-T651 sheets[J]. Metals, 2020, 10(12): 10121605.
11 Atak A. Impact of pinless stirring tools with different shoulder profile designs on friction stir spot welded joints[J]. Journal of Mechanical Science and Technology, 2020, 34(9): 3735-3743.
12 Yazdi S R, Beidokhti B, Haddad-Sabzevar M. Pinless tool for FSSW of AA 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology, 2019, 267: 44-51.
13 Zhang Z, Yu Y, Zhao H, et al. Interface behavior and impact properties of dissimilar Al/Steel keyhole-free FSSW joints[J]. Metals, 2019, 9(6): 9060691.
14 宫文彪, 朱芮, 郄新哲, 等. 6082铝合金超厚板搅拌摩擦焊接头组织与性能[J]. 吉林大学学报: 工学版, 2020, 50(2): 512-519.
Gong Wen-biao, Zhu Rui, Xin-zhe Qie, et al. Microstructure and properties of 6082 aluminum alloy ultra-thick plate preparated by friction stir weld[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 512-519.
15 Zhou L, Luo L Y, Zhang T P, et al. Effect of rotation speed on microstructure and mechanical properties of refill friction stir spot welded 6061-T6 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(9-12): 3425-3433.
16 邹阳帆, 王非凡, 李文亚, 等. 不等厚2219铝合金板回填式搅拌摩擦点焊接头组织及性能研究[J]. 机械工程学报, 2020, 56(6): 176-183.
Zou Yang-fan, Wang Fei-fan, Li Wen-ya, et al. Study on microstructure and properties of refill friction stir spot welding joints of 2219 aluminum alloy with different thickness[J]. Journal of Mechanical Engineering, 2020, 56(6): 176-183.
[1] 陈磊,王杨,董志圣,宋亚奇. 一种基于转向意图的车辆敏捷性控制策略[J]. 吉林大学学报(工学版), 2023, 53(5): 1257-1263.
[2] 陈鑫,张冠宸,赵康明,王佳宁,杨立飞,司徒德蓉. 搭接焊缝对铝合金焊接结构轻量化设计的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1282-1288.
[3] 张勇,毛凤朝,刘水长,王青妤,潘神功,曾广胜. 基于Laplacian算法的汽车外流场畸变网格优化[J]. 吉林大学学报(工学版), 2023, 53(5): 1289-1296.
[4] 汪少华,储堃,施德华,殷春芳,李春. 基于有限时间扩张状态观测的HEV鲁棒复合协调控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1272-1281.
[5] 谢超,王起才,于本田,李盛,林晓旭,鲁志铭. 聚氨酯涂膜弹性模量的AFM测定及微观结构分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1322-1330.
[6] 陈小波,陈玲. 定位噪声统计特性未知的变分贝叶斯协同目标跟踪[J]. 吉林大学学报(工学版), 2023, 53(4): 1030-1039.
[7] 赵睿,李云,胡宏宇,高镇海. 基于V2I通信的交叉口车辆碰撞预警方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1019-1029.
[8] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[9] 何科,丁海涛,许男,郭孔辉. 基于摄像头和车道线的增强定位系统[J]. 吉林大学学报(工学版), 2023, 53(3): 663-673.
[10] 朱冰,范天昕,赵健,张培兴,孙宇航. 基于危险边界搜索的自动驾驶系统加速测试方法[J]. 吉林大学学报(工学版), 2023, 53(3): 704-712.
[11] 田彦涛,季言实,唱寰,谢波. 深度强化学习智能驾驶汽车增广决策模型[J]. 吉林大学学报(工学版), 2023, 53(3): 682-692.
[12] 张建,刘金波,高原,刘梦可,高振海,杨彬. 基于多模交互的车载传感器定位算法[J]. 吉林大学学报(工学版), 2023, 53(3): 772-780.
[13] 何科,丁海涛,赖宣淇,许男,郭孔辉. 基于Transformer的轮式里程计误差预测模型[J]. 吉林大学学报(工学版), 2023, 53(3): 653-662.
[14] 刘嫣然,孟庆瑜,郭洪艳,李嘉霖. 图注意力模式下融合高精地图的周车轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 792-801.
[15] 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!