吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 294-312.doi: 10.13229/j.cnki.jdxbgxb.20220298

• 农业工程·仿生工程 • 上一篇    

刮刷组合式葡萄藤防寒土清土机设计与试验

马帅1(),徐丽明1(),许述财2,牛丛1,闫成功1,谭好超1   

  1. 1.中国农业大学 工学院,北京 100083
    2.清华大学 汽车安全与节能国家重点实验室,北京 100084
  • 收稿日期:2022-03-23 出版日期:2024-01-30 发布日期:2024-03-28
  • 通讯作者: 徐丽明 E-mail:13637070719@163.com;xlmoffice@126.com
  • 作者简介:马帅(1993-),男,博士研究生.研究方向:生物生产自动化.E-mail:13637070719@163.com
  • 基金资助:
    现代农业产业技术体系建设专项资金项目(CARS-29)

Design and experiment of grapevine cold⁃proof soil cleaner with combined scraping and brushing

Shuai MA1(),Li-ming XU1(),Shu-cai XU2,Cong NIU1,Cheng-gong YAN1,Hao-chao TAN1   

  1. 1.College of Engineering,China Agricultural University,Beijing 100083,China
    2.State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China
  • Received:2022-03-23 Online:2024-01-30 Published:2024-03-28
  • Contact: Li-ming XU E-mail:13637070719@163.com;xlmoffice@126.com

摘要:

针对我国北方露地葡萄藤防寒土春季清除机械化作业清土不彻底、易伤藤和机具适应差等问题,设计了一种刮刷组合式葡萄藤防寒土清土机。该机采用双翼式刮土板部件、刚性叶轮部件和柔性刷丝部件分别将葡萄藤的上方防寒土、侧边外围防寒土和根部附近防寒土一次性清除。对关键部件进行设计,搭建基于STM32F103的控制系统,实现双翼式刮土板部件的自动避障和机具的自动调平。调平性能试验表明,当调平机架向左倾斜到最大角度或向右倾斜到最大角度时,均能在1 s内完成自动调平过程,且没有明显的超调量;当拖拉机行驶在不平整的葡萄行间时,即使拖拉机车身发生较大的倾斜变化,挂接在后侧机具上的清土部件仍能保持期望的水平状态(±2°以内)进行作业;田间清土试验表明,各清土部件运行稳定,不存在相互作业干涉的情况,清土作业后的清土率约为81.96%,葡萄藤损伤率约为1.67%,满足我国北方露地葡萄藤防寒土清除作业要求。

关键词: 农业机械化, 葡萄藤防寒土, 刮刷组合式, 清土机

Abstract:

Aiming at the problems of incomplete soil cleaning, easy damage to the grapevine and poor adaptation by mechanized soil cleaning in the open-field vineyards of northern China, a grapevine cold-proof soil cleaner with combined scraping and brushing is designed. The double-winged scraper components, rigid impeller components and flexible brush wire components are adopted, which can clean the cold-proof soil above the grapevine, the cold-proof soil on the side periphery and the cold-proof soil near the root of the grapevine at one time. The key components were design and a control system based on STM32F103 was built to realize automatic obstacle avoidance of scraper components and automatic leveling of the machine. Leveling performance tests showed that when the leveling frame was tilted to the left to the maximum angle or tilted to the right to the maximum angle, the automatic leveling process can be completed within 1 s, and there is no obvious overshooting. When the tractor was driven on uneven vineyards, the three soil cleaning components maintain the desired leveling angle at all times (within±2°), even if the tractor itself undergoes a large change in tilt. The field soil cleaning test showed that all the working components operated stably and there was no interference. After the soil cleaning operation, the soil cleaning rate was about 81.96%, and the grapevine damage rate was about 1.67%, which met the requirements of open-field grapevine cold-proof soil cleaning in northern China.

Key words: agricultural mechanization, grapevine cold-proof soil, combined scraping and brushing, soil cleaner

中图分类号: 

  • S224.9

图1

葡萄藤防寒土土垄示意图1-防寒土土垄;2-水泥柱;3-铁丝;4-葡萄藤上方防寒土;5-葡萄藤;6-葡萄藤根部附近防寒土;7-葡萄藤侧边外围防寒土"

图2

刮刷组合式葡萄藤防寒土清土机结构简图1-控制柜;2-风冷却器;3-液压阀组;4-油箱;5-主机架;6-倾角传感器;7-液压泵;8-液压马达;9-刮土板部件;10-刷子部件;11-叶轮部件;12-幅宽伸缩机架;13-旋转轴;14-幅宽调节油缸;15-齿轮箱;16-调平油缸;17-调平机架;18-三点悬挂;19-避障油缸;20-触杆;21-一级皮带传动;22-二级皮带传动"

表1

葡萄藤防寒土清土机主要技术参数"

参 数数 值
整机尺寸(长×宽×高)/mm×mm×mm2000×1830×1680
整机质量/kg650
配套动力/kW≥40
适应行距/m3~4
清土高度/mm≤350
输入转速/(r·min-1540
作业速度/(km·h-11.2~1.5

图3

刮土板部件整体结构简图1-双翼式刮土板;2-触杆;3-后限位挡块;4-前限位挡块;5-角度传感器;6-气弹簧;7-避障油缸;8-后侧行程开关;9-固定机架;10-触碰块;11-前侧行程开关;12-连接机架;13-安装机架;14-联轴器;15-旋转轴;16-限位杆"

图4

双翼式刮土板结构示意图"

图5

叶轮部件结构示意图1-花键连接轴套;2-叶轮轴;3-叶轮片连接板;4-弧形叶轮片"

图6

柔性刷丝部件结构示意图"

图7

自动调平机构运动简图"

图8

自动调平机构受力示意图"

图9

自动调平控制系统原理图"

图10

控制系统硬件组成1-蓄电池(12 V);2-降压模块(12 V转5 V);3-STM32F103单片机;4-显示屏;5-转角传感器;6-电磁换向阀;7-避障油缸;8-电压转电流模块;9-比例换向阀;10-调平油缸;11-倾角传感器;12-RS232转TTL串口;13-升压模块(12 V转24 V);14-电源开关; 15-继电器模块;16-航空插头;17-控制柜"

图11

系统控制流程图"

图12

双翼式刮土板自动避障仿真作业1-固定机架;2-避障油缸;3-伸缩机架;4-双翼式刮土板;5-触杆;6-水泥柱"

图13

刮土板部件自动避障运动轨迹"

表2

试验因素编码"

编码前进速度v2/(m?s-1油缸作业速度v3/(mm?s-1角度阈值α0/(°)
-1.6820.301605
-10.321686
00.351807.5
10.381929
1.6820.4020010

表3

仿真实验方案与结果"

序号前进速度编码值X1油缸作业速度编码值X2角度阈值编码值X3有效作业率E/%
111147.33
211-146.67
31-1143.33
41-1-142.93
5-11151.07
6-11-150.67
7-1-1148.50
8-1-1-147.73
91.6820044.00
10-1.6820050.67
1101.682049.47
120-1.682044.13
13001.68248.00
1400-1.68246.80
1500046.67
1600046.83
1700047.17
1800047.07
1900046.93
2000048.00

表4

回归模型显著性分析"

方差来源平方和自由度FP
模型99.91979.68<0.0001**
X161.271439.81<0.0001**
X236.191259.75<0.0001**
X31.3219.490.0116*
X1X20.6214.460.0608
X1X31.513E-00310.0110.9191
X2X31.513E-00310.0110.9191
X120.1411.020.3363
X220.1210.840.3823
X320.2211.550.2420
残差1.3910
失拟项0.2950.260.9146
纯误差1.105
总值101.3019

图14

刮刷组合式清土部件的空间布局1-双翼式刮土板;2-分层交错式弧形叶轮;3-柔性刷丝-橡胶清土部件"

图15

刮刷组合式清土部件离散元仿真实验1-地面;2-土垄;3-双翼式刮土板;4-分层交错式弧形叶轮;5-柔性刷丝-橡胶清土部件"

表5

倾角传感器标定结果"

测量参数测量值
传感器信号值U/V1.271.391.561.751.902.03
调平机架倾角σ/(°)-20.0-14.2-5.63.812.417.5

图16

自动调平系统静态试验1-调平机架;2-电脑;3-调平油缸;4-主机架;5-倾角传感器;6-控制柜"

图17

静态调平试验结果"

图18

自动调平系统田间动态试验"

图19

田间动态试验结果"

图20

葡萄藤防寒土含水率和紧实度测量"

图21

试验设备"

图22

田间清土作业效果"

表6

葡萄藤损伤率"

葡萄行葡萄总株数损伤葡萄藤株数损伤率/%
平均值1.67%
115021.33
215032.00

表7

清土率"

葡萄行清土前土垄尺寸平均值/cm清土后土垄尺寸平均值/cm清土率/%
上底宽下底宽总高上底宽下底宽总高
均值3186.533.51421.52081.96
130853215211981.41
232883513222182.50
1 Wang J, Zhang X Y, Su L, et al. Global warming effects on climate zones for wine grape in Ningxia region, China [J]. Theoretical and Applied Climatology, 2020, 140(4): 1527-1536.
2 马帅,徐丽明,袁全春,等. 葡萄机械化清土的发展现状与解决对策[J]. 农机化研究, 2020, 42(7): 1-8.
Ma Shuai, Xu Li-ming, Yuan Quan-chun, et al. Development status and countermeasures of grape mechanized soil clearing[J]. Journal of Agricultural Mechanization Research, 2020, 42(7): 1-8.
3 刘松. 圆锥螺旋式入春葡萄挖藤机设计与试验研究[D]. 乌鲁木齐:新疆农业大学, 2014.
Liu Song. Design and experiment study of conical spiral manner of grape vines in the spring digging machine[D]. Urumqi: Xinjiang Agricultural University, 2014.
4 亓桂梅,李旋,赵艳侠,等. 2017年世界葡萄及葡萄酒生产及流通概况[J]. 中外葡萄与葡萄酒, 2018(1): 68-74.
Qi Gui-mei, Li Xuan, Zhao Yan-xia, et al. Production and circulation of grape and its products in the world in 2017[J]. Sino-Overseas Grapevine & Wine, 2018(1): 68-74.
5 袁全春,徐丽明,马帅,等. 我国北方葡萄冬季埋土和春季清土作业的机械化现状与思考[J]. 中外葡萄与葡萄酒, 2017(6): 66-67.
Yuan Quan-chun, Xu Li-ming, Ma Shuai, et al. Current status and considerations on mechanization of winter burying and spring cleaning operations for grapes in northern China[J]. Sino-Overseas Grapevine & Wine, 2017(6): 66-67.
6 徐丽明,邢洁洁,李世军,等. 国外葡萄生产机械化发展和对我国现状的思考[J]. 河北林业科技, 2014(5): 124-128.
Xu Li-ming, Xing Jie-jie, Li Shi-jun, et al. Development of mechanization of grape production abroad and reflections on China's current situation[J]. Journal of Hebei Forestry Science and Technology, 2014(5): 124-128.
7 周伟斌. 葡萄起藤机的设计[D]. 银川: 宁夏大学机械工程学院, 2017.
Zhou Wei-bin. Design of grape vine digging machine[D]. Yinchuan: School of Mechanical Engineering,Ningxia University, 2017.
8 Bisaglia C, Romano E. Utilization of vineyard prunings: A new mechanization system from residues harvest to CHIPS production[J]. Biomass & Bioenergy, 2018, 115: 136-142.
9 曾鉴. 气吹梳刷组合式葡萄防寒土清除机的设计与试验[D]. 北京: 中国农业大学工学院, 2020.
Zeng Jian. Design and experiment of combined air-blown and brush grape cold-proof soil remover[D]. Beijing: College of Engineering, China Agricultural University, 2020.
10 杜光雨. 风力吹送式酿酒葡萄清土机设计及试验研究[D]. 镇江:江苏大学农业工程学院, 2020.
Du Guang-yu, Design and experimental study of wine grape covering soil clearing machine with wind blowing [D]. Zhenjiang: College of Agricultural Engineering, Jiangsu University, 2020.
11 曾保宁,田志道,赵润良. 葡萄起藤机的设计与研制[J]. 中国农机化学报, 2013(6): 230-232.
Zeng Bao-ning, Tian Zhi-dao, Zhao Run-liang. Design and development of grape vine machine[J]. Journal of Chinese Agricultural Mechanization, 2013(6): 230-232.
12 陈智, 万平, 杨术明, 等. 葡萄藤起藤自动除土机[P]. 中国: CN205755312U. 2016-12-07.
13 李法键. 葡萄园防寒土清除机关键部件设计与分析[D]. 秦皇岛: 河北科技师范学院机电工程学院, 2019.
Li Fa-jian. Design and analysis on key components of vineyard cold soil removal machine [D]. Qinhuangdao: College of Agricultural Engineering, Hebei Normal University of Science & Technology, 2019.
14 刘芳建,刘忠军,王锦江,等. 自动避障葡萄藤扒土机的设计与试验研究[J]. 农机化研究, 2018(4): 87-90.
Liu Fang-jian, Liu Zhong-jun, Wang Jin-jiang, et al. Design and experimental study of automatic obstacle-avoid digging machine for grape wine[J]. Journal of Agricultural Mechanization Research, 2018(4): 87-90.
15 王文斌. 葡萄清土开沟机设计研究[D]. 北京: 中国农业大学工学院, 2015.
Wang Wen-bin. Research & design of grape vines digger[D]. Beijing: College of Engineering, China Agricultural University, 2015.
16 马帅,徐丽明,邢洁洁,等. 叶轮旋转式葡萄藤埋土单边清除机研制[J]. 农业工程学报, 2018, 34(23): 1-10.
Ma Shuai, Xu Li-ming, Xing Jie-jie, et al. Development of unilateral cleaning machine for grapevine buried by soil with rotary Impeller[J]. Transactions of the CSAE, 2018, 34(23): 1-10.
17 Ma Shuai, Niu Cong, Yan Cheng-gong, et al. Soil cleaning effect and parameters optimization of the scraper for grapevine cold-proof soil investigated by DEM simulation [J]. Biosystems Engineering,2021, 210: 156-170.
18 Coetzee C J, Lombard S G. Discrete element method modelling of a centrifugal fertiliser spreader[J]. Biosystems Engineering, 2011, 109(4): 308-325.
19 Ding S, Bai L, Yao Y, et al. Discrete element modelling (DEM) of fertilizer dual-banding with adjustable rates[J]. Computers and Electronics in Agriculture, 2018, 152: 32-39.
20 胡永光,杨叶成,肖宏儒,等. 茶园施肥机离心撒肥过程仿真与参数优化[J]. 农业机械学报, 2016, 47(5): 77-82.
Hu Yong-guang, Yang Ye-cheng, Xiao Hong-ru, et al. Simulation and parameter optimization of centrifugal fertilizer spreader for tea plants[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 77-82.
21 Van L P, Tijskens E, Dintwa E, et al. A discrete element model for simulation of a spinning disc fertilizer spreader I. Single particle simulations[J]. Powder Technology, 2006, 170(2):71-85.
22 吕金庆,孙贺,兑瀚,等. 锥形撒肥圆盘中肥料颗粒运动模型优化与试验[J]. 农业机械学报, 2018, 49(6): 85-91.
Lv Jin-qing, Sun He, Han Dui, et al. Optimization and experiment of fertilizer particle motion model in conical spreading disk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 85-91.
23 马帅,徐丽明,牛丛,等. 分层交错式葡萄防寒土弧形清土叶轮的设计与试验[J]. 农业工程学报, 2021, 37(10): 1-9.
Ma Shuai, Xu Li-ming, Niu Cong, et al. A facile arc impeller with layered-staggered structure to clean cold-proof soil on grapes[J]. Transactions of the CSAE, 2021, 37(10): 1-9.
24 孙永佳,周军,李学强,等. 马铃薯联合收获机车身调平系统设计与试验[J]. 农业机械学报, 2020, 51(): 298-306.
Sun Yong-jia, Zhou Jun, Li Xue-qiang, et al. Design and experiment of body leveling system for potato combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(Sup.): 298-306.
25 董伟亮. 液压设计手册[M]. 北京: 机械工业出版社, 2005.
26 周浩,胡炼,罗锡文,等. 旋耕机自动调平系统设计与试验[J]. 农业机械学报, 2016, 47(): 117-123.
Zhou Hao, Hu Lian, Luo Xi-wen, et al. Design and experiment on auto leveling system of rotary tiller [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Sup.): 117-123.
27 潘杰,陈凡,胡建平,等. 基于EDEM-RecurDyn的指夹式取苗爪仿真优化设计[J]. 农业机械学报, 2023,53(5):75-85, 301.
Pan Jie, Chen Fan, Hu Jian-ping, et al. Simulation and optimization design of finger-clamping seedling picking claw based on EDEM-RecurDyn[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023,53(5):75-85, 301.
28 王少杰, 殷月, 余圣锋, 等. 基于RecurDyn-EDEM的装载机耦合动力学仿真分析[J]. 机械设计, 2021,38(11):1-6.
Wang Shao-jie, Yin Yue, Yu Sheng-feng, et al. Dynamic analysis on loader coupling based on RecurDyn-EDEM[J]. Journal of Machine Design, 2021, 38(11):1-6.
29 于畅畅,徐丽明,王庆杰,等. 篱架式栽培葡萄双边作业株间自动避障除草机设计与试验[J]. 农业工程学报, 2019, 35(5): 1-9.
Yu Chang-chang, Xu Li-ming, Wang Qing-jie, et al. Design and experiment of bilateral operation intra-row auto obstacle avoidance weeder for trellis cultivated grape[J]. Transactions of the CSAE, 2019, 35(5): 1-9.
30 马帅,徐丽明,袁全春,等. 葡萄藤防寒土与清土部件相互作用的离散元仿真参数标定[J]. 农业工程学报, 2020, 36(1): 40-49.
Ma Shuai, Xu Li-ming, Yuan Quan-chun, et al. Calibration of discrete element simulation parameters of grapevine antifreezing soil and its interaction with soil-cleaning components[J]. Transactions of the CSAE, 2020, 36(1): 40-49.
[1] 周鹏飞,陈学庚,蒙贺伟,梁荣庆,张炳成,坎杂. 滚筒式机收膜杂除土装置设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2718-2731.
[2] 刘伟健,罗锡文,曾山,文智强,曾力. 履带式再生稻收获机田间转弯机理和性能试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2695-2705.
[3] 张茂健,金敬福,陈奕颖,陈廷坤. 轮式拖拉机对称结构的振动特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2136-2142.
[4] 朱光强,李天宇,周福君,王文明. 鲜食玉米仿生摘穗装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1231-1244.
[5] 顿国强,刘文辉,毛宁,吴星澎,纪文义,马洪岩. 交替换岗式大豆小区育种排种器优化设计与试验[J]. 吉林大学学报(工学版), 2023, 53(1): 285-296.
[6] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
[7] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[8] 高文英,林静,李宝筏,王伟,谷士艳. 秸秆深埋还田机振动特性分析与结构优化[J]. 吉林大学学报(工学版), 2022, 52(4): 970-980.
[9] 刘佳杰,马兰,向伟,颜波,文庆华,吕江南. 4QM-4.0型麻类青饲料联合收获机研制[J]. 吉林大学学报(工学版), 2022, 52(12): 3039-3048.
[10] 曾百功,黎奎良,叶进,任丽丽,Rashidov Jaloliddin,张明. 工厂化上海青流水线收割装置的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2756-2764.
[11] 万星宇,廖庆喜,蒋亚军,单伊尹,周宇,廖宜涛. 饲用油菜机械化收获切碎过程离散元仿真与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2735-2745.
[12] 朱光强,李天宇,周福君. 鲜食玉米仿生摘穗柔性夹持输送装置设计与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2486-2500.
[13] 梁荣庆,钟波,蒙贺伟,孙志民,坎杂. 4QJ⁃3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报(工学版), 2021, 51(5): 1887-1896.
[14] 袁佳诚,王昌,何坤,万星宇,廖庆喜. 油菜联合收获机筛下物组分质量比对清选性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1897-1907.
[15] 王刚,刘慧力,贾洪雷,郭春江,丛永健,屈明浩. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!