吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3309-3317.doi: 10.13229/j.cnki.jdxbgxb.20240916

• 计算机科学与技术 • 上一篇    下一篇

适用于无监督行人重识别的反向骨干网

于鹏(),朴燕()   

  1. 长春理工大学 电子信息工程学院,长春 130022
  • 收稿日期:2024-08-20 出版日期:2024-11-01 发布日期:2025-04-24
  • 通讯作者: 朴燕 E-mail:yup1212@mails.cust.edu.cn;piaoyan@cust.edu.cn
  • 作者简介:于鹏(1988-),男,博士研究生. 研究方向:机器视觉. E-mail:yup1212@mails.cust.edu.cn
  • 基金资助:
    吉林省自然科学基金项目(20210101180JC);吉林省科技厅科技发展计划项目(20180623039TC)

Reverse backbone net for unsupervised person re-identification

Peng YU(),Yan PIAO()   

  1. School of Electronic and Information Engineering,Changchun University of Science and Technology,Changchun 130022,China
  • Received:2024-08-20 Online:2024-11-01 Published:2025-04-24
  • Contact: Yan PIAO E-mail:yup1212@mails.cust.edu.cn;piaoyan@cust.edu.cn

摘要:

行人重识别(re-id)的目的是在不同的摄像机上识别同一个人的图像。虽然无监督模型比有监督模型有更好的泛用性,但无监督的聚类会更容易受到噪声干扰。针对这一问题,本文提出了一个可以减少噪声干扰的模型反向骨干网(RBNet),利用反向骨干网学习姿态检测模型输出的人体关键点,调整局部空间信息并生成掩码,用生成掩码增强指定位置注意力。实验结果表明:对比baseline在Market-1501到DukeMTMC-reID的跨域实验结果,mAP提升了7.0%,Rank-1提升了6.4%。强化对不同局部信息的注意力,可有效提升模型准确率。

关键词: 人工智能, 行人重识别, 人体关键点, 无监督域自适应

Abstract:

The purpose of person re-identification (re-id) is to identify images of the same person on different cameras. Although unsupervised models have better generalization than supervised models, unsupervised clustering will be more susceptible to noise interference. To address this problem, this paper proposes a model reverse backbone net (RBNet) that can reduce noise interference, using RBNet to learn the keypoints of the human body output from the pose detection model, adjusting the local spatial information and generating masks, and augmenting the specified location attention with the generated masks. The experimental results show that comparing baseline's cross-domain experimental results from Market-1501 to DukeMTMC-reID, mAP is enhanced by 7.0% and Rank-1 by 6.4%. Strengthening the attention to different local information can effectively improve the model accuracy.

Key words: artificial intelligence, person re-identification, human keypoints, unsupervised domain adaptation

中图分类号: 

  • TP391.4

图 1

模型结构"

表 1

模型参数"

blockorderedDictI/OBCHWBCHWI/OorderedDictblock
conv 1conv1input6432561286417256128outputconv1re-conv 1
output646412864646412864input
maxpoolinput646412864646412864outputupsample
output6464643264646432input
layer 10input6464643264646432output2re-layer 1
0output642566432642566432input2
layer 20input642566432642566432output3re-layer 2
0output645123216645123216input3
layer 30input645123216645123216output5re-layer 3
0output641 024168641 024168input5
layer 40input641 024168641 024168output2re-layer 4
0output642 048168642 048168input2

图2

基于MMT设计的跨域模型"

表 2

在Market-1501、 DukeMTMC-reID 和 MSMT17数据集上的性能对比"

MethodMarket-1501DukeMTMC-reIDMSMT17
mAPR-1mAPR-1mAPR-1
GCP 2188.995.278.689.7
MMGA 587.295.078.189.5
RGA-SC 888.496.157.580.3
AANet-50 182.4593.8972.5686.42
PCB 381.693.869.283.3
OSNet 984.994.873.588.652.978.7
FastReID 2288.295.479.889.659.983.3
CBDB-Net 2385.094.474.387.7
PAT 2488.095.478.288.8
CDNet 2586.095.176.888.654.778.9
RBNet(conv 1)88.595.680.089.760.884.9
RBNet(relayer 1)89.196.181.190.062.785.1
RBNet(relayer 2)84.394.073.983.349.477.1

图 3

显示模型注意力"

图 4

不同域时模型的注意力"

表 3

RBNet在DukeMTMC-reID to Market-1501和Market-1501 to Duke任务中的使用聚类跨域实验结果"

M-> D
基于模型modelmAPRank-1Rank-5Rank-10
ResNet-50MMCL 2751.472.4
Eapp (ResNet 50)DG-Net++ 2863.878.9
ResNet-50GDS 2955.173.1
ResNet 50GPP 3054.474.0
ResNet 50MMT-500 1463.176.888.092.2
MMT (ResNet 50)MetaCam 1265.079.5
fast-reidGLT 2669.282.090.292.8
MMT (ResNet 50)MMT+RBNet70.183.290.892.9
D-> M
基于模型modelmAPRank-1Rank-5Rank-10
ResNet-50MMCL60.484.4
Eapp(ResNet-50)DG-Net++61.782.1
ResNet-50GDS61.281.1
ResNet 50GPP+63.884.1
ResNet 50MMT-50071.287.794.996.9
MMT (ResNet 50)MetaCam76.590.1
fast-reidGLT79.592.296.597.8
MMT (ResNet 50)MMT+RBNet79.892.496.797.9

表4

RBNet在DukeMTMC-reID to Market-1501和Market-1501 to DukeMTMC-reID任务中的不使用聚类跨域实验结果"

M->D
MethodmAPRank-1Rank-5Rank-10
APNet-c3 3122.837.752.459.0
OSNet 926.748.562.367.4
resnet 5017.332.747.153.4
resnet 50+RBNet27.449.462.967.7
D->M
MethodmAPRank-1Rank-5Rank-10
APNet-c323.750.966.672.6
OSNet26.157.773.780.0
resnet 5017.743.950.967.5
resnet 50+RBNet27.560.675.780.8
1 Chiat P T, Sharmili R, Kim H Y. AANet: attribute attention network for person re-identifications[C]∥32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7127-7136.
2 Lin Y T, Zheng L, Zheng Z D, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161.
3 Sun Y F, Zheng L, Yang Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]∥15th European Conference on Computer Vision, Munich, Germany, 2018: 501-518.
4 Miao J X, Wu Y, Yang Y. Identifying visible parts via pose estimation for occluded person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4624-4634.
5 Cai H L, Wang Z G, Cheng J X. Multi-scale body-part mask guided attention for person re-identification[C]∥32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1555-1564.
6 Qiao S Y, Chen L C, Alan Y. Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10208-10219.
7 Hou S Q, Yin K N, Liang J, et al. Gradient-supervised person re-identification based on dense feature pyramid network[J]. Complex & Intelligent Systems, 2022, 8(6I): 5329-5342.
8 Zhang Z Z, Lan G L, Zeng W J, et al. Relation-aware global attention for person re-identification[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3183-3192.
9 Zhou K Y, Yang Y X, Cavallaro A, et al. Omni-scale feature learning for person re-identification[C]∥IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 3701-3711.
10 Divyansh G, Netra P, Thomas T, et al. Towards explainable person re-identification[C]∥IEEE Symposium Series on Computational Intelligence, Orlando, USA, 2021: 9660071.
11 Niki M, Gian L F, Christian M. Deep pyramidal pooling with attention for person re-identification[J]. IEEE Transactions on Image Processing, 2020, 29: 7306-7316.
12 Yang F X, Zhong Z, Luo Z M, et al. Joint noise-tolerant learning and meta camera shift adaptation for unsupervised person re-identification[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 4853-4862.
13 Antti T, Harri V. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]∥31st Annual Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1195-1204.
14 Ge Y X, Chen D P, Li H S. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification[C]∥8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020: 200101526.
15 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥ IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2016: 770-778.
16 Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]∥32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5686-5696.
17 Martin E, Hans P K, Jorg S, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]∥2nd International Conference on Knowledge Discovery and Data Mining, Portland, USA, 1996: 226-231.
18 Zheng L, Shen L Y, Tian L, et al. Scalable person re-identification: a benchmark[C]∥IEEE International Conference on Computer Vision, Santiago, USA, 2015: 1116-1124.
19 Ergys R, Francesco S, Roger Z, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]∥14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 17-35.
20 Wei L H, Zhang S L, Gao W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]∥31st IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 79-88.
21 Park H J, Ham B. Relation network for person re-identification[C]∥34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11839-11847.
22 He L X, Liao X Y, Liu W, et al. Fastreid: a pytorch toolbox for general instance re-identification[J]. Proceedings of the 31st ACM International Conference on Multimedia, 2020, 10: 9662-9667.
23 Tan H C, Liu X P, Bian Y H, et al. Incomplete descriptor mining with elastic loss for person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 160-171.
24 Li Y L, He J F, Zhang T Z, et al. Diverse part discovery: occluded person re-identification with part-aware transformer[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2897-2906.
25 Li H J, Wu G J, Zheng W S. Combined depth space based architecture search for person re-identification[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6725-6734.
26 Zheng K C, Liu W, He L X, et al. Group-aware label transfer for domain adaptive person re-identification[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5306-5315.
27 Wang D K, Zhang S L. Unsupervised person re-identification via multi-label classification[J]. International Journal of Computer Vision, 2022, 130(12): 2924-2939.
28 Zou Y, Yang X D, Yu Z D, et al. Joint disentangling and adaptation for cross-domain person re-identification[C]∥16th European Conference on Computer Vision, Glasgow, UK, 2020: 87-104.
29 Jin X, Lan C L, Zeng W J, et al. Global distance-distributions separation for unsupervised person re-identification[C]∥16th European Conference on Computer Vision, Glasgow, UK, 2020: 735-751.
30 Zhong Z, Zheng L, Luo Z M, et al. Learning to adapt invariance in memory for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(8): 2723-2738.
31 Chen G Y, Gu T P, Lu J W, et al. Person re-identification via attention pyramid[J]. IEEE Transactions on Image Processing, 2021, 30: 7663-7676.
[1] 曹毅,夏宇,高清源,叶培涛,叶凡. 基于超连接图卷积网络的骨架行为识别方法[J]. 吉林大学学报(工学版), 2025, 55(2): 731-740.
[2] 井佩光,田雨豆,汪少初,李云,苏育挺. 基于动态扩散图卷积的交通流量预测算法[J]. 吉林大学学报(工学版), 2024, 54(6): 1582-1592.
[3] 曲福恒,潘曰涛,杨勇,胡雅婷,宋剑飞,魏成宇. 基于加权空间划分的高效全局K-means聚类算法[J]. 吉林大学学报(工学版), 2024, 54(5): 1393-1400.
[4] 孙帅帅,冯春晓,张良. 基于离散采样的多模态四足机器人路径规划[J]. 吉林大学学报(工学版), 2024, 54(4): 1120-1128.
[5] 金志刚,苏仁鋆,赵晓芳. 基于异质图网络的心理评估方法[J]. 吉林大学学报(工学版), 2024, 54(4): 1078-1085.
[6] 高敬鹏,王国轩,高路. 基于异步合作更新的LSTM-MADDPG多智能体协同决策算法[J]. 吉林大学学报(工学版), 2024, 54(3): 797-806.
[7] 刘浏,丁鲲,刘姗姗,刘茗. 基于机器阅读理解的事件检测方法[J]. 吉林大学学报(工学版), 2024, 54(2): 533-539.
[8] 李健,熊琦,胡雅婷,刘孔宇. 基于Transformer和隐马尔科夫模型的中文命名实体识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1427-1434.
[9] 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162.
[10] 刘春晖,王思长,郑策,陈秀连,郝春蕾. 基于深度学习的室内导航机器人避障规划算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3558-3564.
[11] 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880.
[12] 王生生,姜林延,杨永波. 基于最优传输特征选择的医学图像分割迁移学习[J]. 吉林大学学报(工学版), 2022, 52(7): 1626-1638.
[13] 田皓宇,马昕,李贻斌. 基于骨架信息的异常步态识别方法[J]. 吉林大学学报(工学版), 2022, 52(4): 725-737.
[14] 刘勇,徐雷,张楚晗. 面向文本游戏的深度强化学习模型[J]. 吉林大学学报(工学版), 2022, 52(3): 666-674.
[15] 侯春萍,杨庆元,黄美艳,王致芃. 基于语义耦合和身份一致性的跨模态行人重识别方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2954-2963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!