吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 884-891.doi: 10.13229/j.cnki.jdxbgxb201503029

• • 上一篇    下一篇

搅拌摩擦焊机器人典型工况下的受载分析

骆海涛1, 2, 周维佳1, 王洪光1, 武加锋1   

  1. 1.中国科学院 沈阳自动化研究所机器人学国家重点实验室,沈阳 110016;
    2.中国科学院大学 沈阳自动化研究所,北京 100049
  • 收稿日期:2013-10-12 出版日期:2015-05-01 发布日期:2015-05-01
  • 作者简介:骆海涛(1983-),男,博士研究生.研究方向:机器人动力学和结构优化.
  • 基金资助:
    国家重大科技专项项目(2010ZX04007-011)

Mechanical analysis of friction stir welding robot under typical working conditions

LUO Hai-tao1, 2, ZHOU Wei-jia1, WANG Hong-guang1, WU Jia-feng1   

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2.Shenyang Institute of Automation,University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-10-12 Online:2015-05-01 Published:2015-05-01

摘要: 以最新研制的搅拌摩擦焊机器人为例,建立了一套针对于大型重载高精度设备的结构设计分析流程。为了提高机器人的焊接精度和评估重要零部件的力学性能,建立了搅拌头的力学模型,并进行了焊接过程的数值仿真,精确地模拟了机器人在5种典型工况下的受载状态,获得了整机刚度和强度的结果数据,最终有效地指导了整个机器人的结构设计。结论表明:搅拌摩擦焊机器人在最恶劣构型瓜瓣焊工况下刚度性能良好,各主要功能元器件安全可靠,整机的刚度性能能够满足给定的焊接指标,为整机的轻量化设计和力学性能优化创造了条件。

关键词: 专用机械工程, 搅拌摩擦焊机器人, 典型工况, 刚度, 强度, 数值模拟

Abstract: Considering the latest developed Friction Stir Welding (FSW) robot, a set of structure design analysis process is established for large-scale equipments of heavy-loading and high precision. The FSW robot is characterized by large volume, complicated structure and extremely bad working conditions. In order to improve the accuracy and evaluate the mechanical property of the welding joints, the mechanical model of the FSW head is built and the welding process under five working conditions is simulated. The obtained forces and torques can be taken as the boundary conditions for robot strength and stiffness analyses; and the analysis results can be used to verify the rationality of structure design of the robot. Simulation results show that the stiffness performance of the robot is good under the most severe welding condition of melon-segments configuration; all the functional components are safe and reliable, and the structure design of FSW robot meets the welding quality requirement. The results may provide references for further lightweight design and mechanical performance optimization of the FSW robot.

Key words: special-use mechanical engineering, friction stir welding (FSW) robot, typical working conditions, stiffness, strength, numerical simulation

中图分类号: 

  • TP242.2
[1] 王国庆. 铝合金的搅拌摩擦焊接[M]. 北京: 中国宇航出版社,2010.
[2] 栾国红. 搅拌摩擦焊接的航天应用[J]. 现代焊接, 2007,9(5):112-114.
Luan Guo-hong. The space application of friction stir welding[J]. Modern Welding,2007,9(5):112-114.
[3] 董春林,栾国红,关桥. 搅拌摩擦焊在航空航天工业的应用发展现状与前景[J]. 焊接,2008(11):25-31.
Dong Chun-lin, Luan Guo-hong, Guan Qiao. Application development present situation and prospect of friction stir welding in the aerospace industry[J]. Welding & Joining,2008(11):25-31.
[4] 栾国红,关桥. 搅拌摩擦焊——革命性的宇航制造新技术[J]. 航天制造技术,2003(4):16-23.
Luan Guo-hong, Guan Qiao. Frictional stir welding-a revolutionary new technology of aerospace manufacturing[J]. Aerospace Manufacturing Technology,2003(4):16-23.
[5] Okawa Y,Taniguchi M,Sugii H,et al. Development of 5-axis friction stir welding system[C]∥SICE-ICASE International Joint Conference,Korea,2006,1266-1269.
[6] Yavuz H. Function-oriented design of a friction stir welding robot[J]. Journal of Intelligent Manufacturing, 2004,15(6):761-775.
[7] 鄢东样,史清宇,吴爱萍. 搅拌头机械载荷在搅拌摩擦焊接中的作用的数值分析[J]. 金属学报,2009,45(8):994-999.
Yan Dong-yang,Shi Qing-yu,Wu Ai-ping. The numerical analysis of friction stir welding with mechanical load from welding head[J]. Acta Metallurgica Sinica,2009,45(8):994-999.
[8] Soron M,Kalaykov I. A robot prototype for friction stir welding[C]∥2006 IEEE Conference on Robotics, Automation and Mechatronics,Bangkok, Thailand,2006:1-5.
[9] 周利,刘会杰,刘鹏. 搅拌头受力模型及应用[J]. 焊接学报,2009,30(3):93-96.
Zhou Li,Liu Hui-jie,Liu Peng. The mechanical model and application of friction stir welding head[J]. Welding Journal,2009,30(3):93-96.
[10] Wong J C. The correspondence between experimental data and computer simulation of friction stir welding (FSW)[D]. Morgantown, West Virginia:Department of Mechanical and Aerospace Engineering,2008.
[11] 赵旭东,张忠科,孙丙岩,等. 基于DEFORM的搅拌摩擦焊接过程数值模拟及流动分析[J]. 机械研究与应用,2009(3):43-46.
Zhao Xu-dong,Zhang Zhong-ke,Sun Bing-yan, et al. Numerical simulation and flow analysis of friction stir welding process based on deform[J]. Mechanical Research & Application,2009(3):43-46.
[12] Mokhtar A. Simulation of friction stir spot welding (FSSW) process: study of friction phenomena[D]. Morgantown, West Virginia:Department of Mechanical and Aerospace Engineering,2007.
[13] 张昭,陈金涛,王晋宝,等. 基于仿真的搅拌摩擦焊连接AA2024-T3不同板厚过程对比[J]. 机械工程学报,2011,47(18):23-27.
Zhang Zhao,Chen Jin-tao,Wang Jin-bao,et al. Simulation comparision of friction stir welding connection process on AA2024-T3 alluminum alloy with different thickness[J]. Chinese Journal of Mechanical Engineering,2011,47(18):23-27.
[14] 汪洪峰,左敦稳,王岷, 等. 7022铝合金搅拌摩擦焊焊接区的组织与力学性能[J]. 华南理工大学学报,2010,38(11):12-16.
Wang Hong-feng,Zuo Dun-wen,Wang Min,et al. 7022 aluminum alloy microstructure and mechanical properties of friction stir welding area[J]. Journal of South China University of Technology,2010,38(11):12-16.
[15] Zhao Hua. Friction stir welding (FSW) simulation using an arbitrary lagrangian-eulerian (ALE) moving mesh approach[D]. Morgantown, West Virginia:Department of Mechanical and Aerospace Engineering,2005.
[16] 丛明,刘同占,温海营,等. 一种新型仿下颌运动机器人设计及运动性能分析[J]. 机器人,2013,35(2):239-248.
Cong Ming, Liu Tong-zhan, Wen Hai-ying, et al. Design and kinematics performance analysis of a novel jaw movement robot[J]. Robot,2013,35(2):239-248.
[17] 房立金,魏永乐,陶广宏. 一种新型带柔索双臂式巡检机器人设计[J]. 机器人,2013,35(3):319-325.
Fang Li-jin,Wei Yong-le,Tao Guang-hong. Design of a novel dual-arm inspection robot with flexible cable[J]. Robot,2013,35(3):319-325.
[18] 刘悦,汪劲松. 基于轴承及导轨接触刚度的混联机床静刚度研究及优化[J]. 机械工程学报,2007,43(9):151-154.
Liu Yue, Wang Jin-song. Static stiffness research and optimization on a hybrid machine tool considering the stiffness of bearings and guideways[J]. Chinese Journal of Mechanical Engineering,2007,43(9):151-154.
[19] 汪满新,王攀峰,宋轶民,等. 4自由度混联机器人静刚度分析[J]. 机械工程学报,2011,47(15):9-16.
Wang Man-xin,Wang Pan-feng,Song Yi-min, et al. Stiffness analysis of a 4-DOF Hybrid robot[J]. Chinese Journal of Mechanical Engineering,2011,47(15):9-16.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[4] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[5] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[6] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[7] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[10] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[11] 刘念, 徐涛, 徐天爽, 胡贤磊, 刘维海. 基于差厚技术的汽车仪表板管梁轻量化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
[12] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[13] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[14] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[15] 王宏朝, 单希壮, 杨志刚. 地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟[J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王文权, 商延赓, 李秀娟, 王春生, 张桂兰. 激光焊接650 MPa相变诱发塑性钢的组织与性能[J]. , 2012, 42(05): 1203 -1207 .
[2] 黄健康1, 何翠翠1, 2, 石玗1, 樊丁1. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] 徐涛, 刘光洁, 葛海潮, 张炜, 于征磊. 焊接热源局部坐标移动曲线路径建模方法[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] 杨悦, 周磊磊. 微弧氧化对铝合金搅拌摩擦焊缝耐蚀性能的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[5] 初亮, 孙成伟, 郭建华, 赵迪, 李文惠. 基于轮缸压力的制动能量回收评价方法[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[6] 何祥坤, 季学武, 杨恺明, 武健, 刘亚辉. 基于集成式线控液压制动系统的轮胎滑移率控制[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[7] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[8] 袁朝春, 张龙飞, 陈龙, 何友国, 范兴根. 基于路面辨识的主动避撞系统制动性能[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[9] 徐洪峰, 高霜霜, 郑启明, 章琨. 信号控制交叉口的复合动态车道管理方法[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .
[10] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440 -447 .