吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 406-413.doi: 10.13229/j.cnki.jdxbgxb20191003

• 车辆工程·机械工程 • 上一篇    

基于驾驶员意图识别的电子液压制动助力系统控制策略

王伟达1,2(),武燕杰1,2,史家磊3,李亮3,4   

  1. 1.北京理工大学 机械与车辆学院,北京 100081
    2.北京理工大学 车辆传动国家重点实验室,北京 100081
    3.清华大学 汽车安全与节能国家重点实验室,北京 100084
    4.清华大学 车辆与运载学院,北京 100084
  • 收稿日期:2019-11-02 出版日期:2021-03-01 发布日期:2021-02-09
  • 作者简介:王伟达(1980-),男,副教授,博士.研究方向:混合动力车辆,机电传动控制.E-mail:wangwd0430@163.com
  • 基金资助:
    国家自然科学基金项目(51575043)

Electronic hydraulic brake power system control strategy based on driver intention recognition

Wei-da WANG1,2(),Yan-jie WU1,2,Jia-lei SHI3,Liang LI3,4   

  1. 1.School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.National Key Lab of Vehicular Transmission,Beijing Institute of Technology,Beijing 100081,China
    3.National Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China
    4.School of Vehicle and Mobile,Tsinghua University,Beijing 100084,China
  • Received:2019-11-02 Online:2021-03-01 Published:2021-02-09

摘要:

为在保证人车安全性的基础上给驾驶员带来更好的制动体验,根据制动主缸压力及压力变化率采用模糊推理对驾驶员制动意图进行识别,将制动意图分为常规减速和紧急制动,分别设计助力电流控制和主动压力控制两种策略,并进行实车验证。结果表明:压力主动控制模式下,制动主缸压力能迅速跟随目标压力;助力电流控制模式下,助力电流能较好地跟随目标电流;对比普通控制策略和本文控制策略在迅速踩下制动踏板时的压力曲线,后者能更快地完成制动主缸建压过程。

关键词: 车辆工程, 电子液压制动, 驾驶员制动意图识别, 紧急制动

Abstract:

In order to give the driver better braking experience on the basis of ensuring safety, the driver’s braking intention is identified according to the pressure of the brake master cylinder and the rate of pressure change. First, the braking intention is divided into conventional deceleration and emergency braking. Then, two control strategies, current closed-loop control and active pressure control, are designed respectively. The two control strategies were verified by real car experiments. The experimental results show that: under active pressure control mode, the brake master cylinder pressure can quickly follow the target pressure. In the current closed-loop control mode, the booster current can follow the target current well. Compared with the ordinary control strategy, the control strategies designed in this paper can complete the process of building the brake master cylinder faster.

Key words: vehicle engineering, electronic hydraulic braking, driver intention recognition, emergency braking

中图分类号: 

  • U463.52

图1

EHB 助力系统结构图"

图2

基于驾驶员制动意图识别的控制策略实现方案"

图3

制动主缸压力隶属度函数"

图4

输出隶属度函数曲线"

表1

驾驶员意图识别模糊规则表"

dPbPb
SML
SCBCBCB
MCBCBCB
LCBEBEB

图5

模糊推理MAP图"

图6

EHB助力系统控制流程图"

图7

助力电流曲线设计"

图8

双闭环电子紧急制动控制器"

图9

模糊PI控制器"

图10

分布式驱动实验车"

图11

压力控制模式阶跃输入曲线"

图12

助力电流控制曲线"

图13

基于驾驶员意图识别的EHB控制策略试验曲线"

图14

普通助力电流控制试验曲线"

1 余卓平, 韩伟, 徐松云, 等. 电子液压制动系统液压力控制发展现状综述[J]. 机械工程学报, 2017, 53(14): 1-15.
Yu Zhuo-ping, Han Wei, Xu Song-yun, et al. A review of the development of hydraulic pressure control in electronic hydraulic braking system[J]. Chinese Journal of Mechanical Engineering, 2017, 53(14): 1-15.
2 刘立国. EHB系统与整车匹配方法研究[D]. 长春: 吉林大学汽车工程学院, 2011.
Liu Li-guo. Study on matching method between EHB system and vehicle[D]. Changchun: College of Automotive Engineering, Jilin University, 2011.
3 潜磊. 电动助力制动系统研究[D]. 长春: 吉林大学汽车工程学院, 2017.
Qian Lei. Research on electric power assisted braking system[D]. Changchun: College of Automotive Engineering, Jilin University, 2017.
4 陈志成, 吴坚, 赵健, 等. 混合线控制动系统制动力精确调节控制策略[J]. 汽车工程, 2018, 40(4): 457-464.
Chen Zhi-cheng, Wu Jian, Zhao Jian, et al. Control strategy of precise control of braking force of hybrid line control system[J]. Automotive Engineering, 2018, 40(4): 457-464.
5 刘杨, 孙泽昌, 王猛. 一体式电液复合制动系统制动力协调控制及试验[J]. 吉林大学学报: 工学版, 2016, 46(3): 718-724.
Liu Yang, Sun Ze-chang, Wang Meng. Brake force cooperative control and test for integrated electro-hydraulic brake system[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(3): 718-724.
6 刘文超. 分布式电动汽车复合制动系统控制策略的研究[D]. 长春: 吉林大学汽车工程学院, 2017.
Liu Wen-chao. Research on control strategy of compound braking system of distributed electric vehicle[D]. Changchun: College of Automotive Engineering, Jilin University, 2017.
7 王治中, 于良耀, 王语风, 等. 分布式电液制动系统执行机构液压控制[J]. 清华大学学报: 自然科学版, 2013, 53(10): 1464-1469.
Wang Zhi-zhong, Yu Liang-yao, Wang Yu-feng, et al. Distributed electro-hydraulic braking system actuator hydraulic control[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(10): 1464-1469.
8 Wu D, Ding H, Guo K, et al. Experimental research on the pressure following control of electro-hydraulic braking system[J].SAE Technical Paper, 2014-01-0848.
9 吴健. 制动系电动助力器助力策略的研究[D]. 广州: 华南理工大学机械与汽车工程学院, 2017.
Wu Jian. Research on the power assistance strategy of electric booster for braking system[D]. Guangzhou: School of Mechanical and Automotive Engineering, South China University of Technology, 2017.
10 陈慧岩, 张瑞琳, 朱晓龙, 等. 越野无人驾驶车双回路电控液压制动系统设计及试验[J]. 北京理工大学学报, 2016, 36(7): 695-700.
Chen Hui-yan, Zhang Rui-lin, Zhu Xiao-long, et al. Design and test of electric control hydraulic braking system for cross-country unmanned vehicle[J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 695-700.
11 余卓平, 熊璐, 张立军. 电液复合制动匹配研究[J]. 汽车工程, 2005(4): 455-457, 462.
Yu Zhuo-ping, Xiong Lu, Zhang Li-jun. Study on electro-hydraulic composite brake matching[J]. Automotive Engineering, 2005(4): 455-457, 462.
12 Xu G, Li W, Xu K, et al. An intelligent regenerative braking strategy for electric vehicles[J]. Energies, 2011, 4(9): 1461-1477.
13 潘宁, 于良耀, 宋健. 考虑舒适性的电动汽车制动意图分类与识别方法[J]. 清华大学学报: 自然科学版, 2016, 56(10): 1097-1103.
Pan Ning, Yu Liang-yao, Song Jian. Classification and identification of braking intention of electric vehicle considering comfort[J]. Journal of Tsinghua University (Science and Technology), 2016,56(10): 1097-1103.
14 孙磊. HEV驾驶员制动意图识别及控制算法研究[D]. 长春: 吉林大学汽车工程学院, 2012.
Sun Lei. Study on HEV driver braking intention identification and control algorithm[D]. Changchun: College of Automotive Engineering, Jilin University, 2012.
15 靳立强, 田端洋, 田浩, 等. 汽车电子稳定系统制动增力辅助技术[J]. 吉林大学学报: 工学版, 2019, 49(6): 1764-1776.
Jin Li-qiang, Tian Duan-yang, Tian Hao, et al. Brake force assistant technology for vehicle electronicstability control system[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1764-1776.
[1] 陈国迎,姚军,王鹏,夏其坤. 适用于后轮轮毂驱动车辆的稳定性控制策略[J]. 吉林大学学报(工学版), 2021, 51(2): 397-405.
[2] 马芳武,梁鸿宇,王强,蒲永锋. 双材料负泊松比结构的面内冲击动力学性能[J]. 吉林大学学报(工学版), 2021, 51(1): 114-121.
[3] 吴岛,张立斌,张云翔,单洪颖,单红梅. 基于滑移率辨识的汽车制动时序视觉检测方法[J]. 吉林大学学报(工学版), 2021, 51(1): 206-216.
[4] 张恩慧,何仁,苏卫东. 不同挡板结构对油箱内油液晃动特性的数值分析[J]. 吉林大学学报(工学版), 2021, 51(1): 83-95.
[5] 熊璐,魏琰超,高乐天. 基于惯性测量单元/轮速融合的车辆零速检测方法[J]. 吉林大学学报(工学版), 2021, 51(1): 134-138.
[6] 陈吉清,蓝庆生,兰凤崇,刘照麟. 基于轮胎力预判与拟合的轨迹跟踪控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1565-1573.
[7] 杨志刚,范亚军,夏超,储世俊,单希壮. 基于双稳态尾迹的方背Ahmed模型减阻[J]. 吉林大学学报(工学版), 2020, 50(5): 1635-1644.
[8] 沈哲,王毅刚,杨志刚,贺银芝. 风洞中未知声源漂移误差的逼近修正[J]. 吉林大学学报(工学版), 2020, 50(5): 1584-1589.
[9] 刘钊,程江琳,朱玉田,郑立辉. 轨道车辆垂向振动建模及运动关联分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1600-1607.
[10] 高菲,肖阳,张文华,祁锦轩,李子樵,马骁远. 高温和荷电状态对锂离子电池单体力学响应的耦合影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1574-1583.
[11] 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555.
[12] 杜常清,曹锡良,何彪,任卫群. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报(工学版), 2020, 50(5): 1556-1564.
[13] 李银平,靳添絮,刘立. 纯电动铲运机弓网续能系统设计与动态特性仿真[J]. 吉林大学学报(工学版), 2020, 50(2): 454-463.
[14] 赖晨光,王擎宇,胡博,文凯平,陈彦宇. 静气动弹性影响下带小翼汽车尾翼的设计与优化[J]. 吉林大学学报(工学版), 2020, 50(2): 399-407.
[15] 叶辉,刘畅,闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!