吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2203-2212.doi: 10.13229/j.cnki.jdxbgxb20220394

• • 上一篇    

适用于质子交换膜燃料电池系统的高阶滑模观测器

李丞1,2(),景浩1,胡广地1,刘晓东1,冯彪1   

  1. 1.西南交通大学 机械工程学院,成都 610036
    2.中国汽车技术研究中心有限公司,天津 300300
  • 收稿日期:2022-04-11 出版日期:2022-09-01 发布日期:2022-09-13
  • 作者简介:李丞(1989-),男,博士研究生. 研究方向:质子交换膜燃料电池汽车. E-mail:leecheng@my.swjtu.edu.cn
  • 基金资助:
    四川省重大科技专项项目(2019ZDZX0028)

High⁃order sliding mode observer for proton exchange membrane fuel cell system

Cheng LI1,2(),Hao JING1,Guang-di HU1,Xiao-dong LIU1,Biao FENG1   

  1. 1.School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610036,China
    2.China Automotive Technology and Research Center Co. ,Ltd. ,Tianjin 300300,China
  • Received:2022-04-11 Online:2022-09-01 Published:2022-09-13

摘要:

针对质子交换膜燃料电池(PEMFC)系统内部状态变量难以通过传感器直接测量,导致不能对PEMFC系统进行故障诊断和设计基于模型的控制器的问题,设计了高阶滑模(HOSM)观测器。首先,搭建了适用于观测的11阶阳极死端PEMFC系统模型。然后,在该模型的基础上,通过HOSM算法对传感器测量值(电堆电压、空压机出口流量以及电堆温度)与估计值之间的误差进行调节,设计了HOSM观测器。最后,将本文HOSM观测器性能与传统滑模观测器性能进行了仿真实验对比。通过对比观测效果图以及平方误差积分可知:本文观测器能够准确地观测各状态量,并且观测性能更优。

关键词: 车辆工程, 质子交换膜燃料电池, 观测器, 高阶滑模, 建模与仿真

Abstract:

To address the problem that the internal state variables of the Proton Exchange Membrane Fuel Cell (PEMFC) system are difficult to be measured directly by sensors, which makes it impossible to troubleshoot the PEMFC system and design a model-based controller, the High Order Sliding Mode (HOSM) observer was designed. Firstly, an 11th-order anode dead-end PEMFC system model suitable for observation was built. Then,on the basis of this model, the HOSM observer was designed by adjusting the errors between the measured sensor values (stack voltage, compressor outlet flow rate and stack temperature) and the estimated values by the HOSM algorithm. Finally, the performance of the designed HOSM observer was compared with the performance of the traditional sliding mode observer. The comparison results of the observation effect and the squared error integral show that the designed observer can accurately observe each state quantity and has better observation performance.

Key words: vehicle engineering, proton exchange membrane fuel cell(PEMFC), observer, high order sliding mode, modeling and simulation

中图分类号: 

  • TM911.4

图1

PEMFC系统结构图"

表1

PEMFC主要参数"

参数取值参数取值
燃料电池节数N3.16经验参数B0.003 255 6
燃料电池活化面积A/cm2260最大电流密度imax/(A·cm-22.2
阳极容积Van/m30.002 35氢气比热容Cp,H2/[J·(g·K)-114.03
阴极容积Vca/m30.004 5氧气比热容Cp,O2/[J·(g·K)-10.917
供应歧管容积Vsm/m30.005氮气比热容Cp,N2/[J·(g·K)-11.039
电压经验参数ξ11.050 2水蒸气比热容Cp,v/[J·(g·K)-11.87
电压经验参数ξ2-0.002 294 9电堆质量比热乘mstCp,st/(kJ·K-1490
电压经验参数ξ3-9.518×10-5法拉第常数F96 485
电压经验参数ξ40.000 148 05空气气体常数Ra/[J·(kg·K)-1286.9
电压经验参数ξ50.000 249 24氢气气体常RH2/[J·(kg·K)-14124
电压经验参ξ6-6.872×10-7氧气气体常RO2/[J·(kg·K)-1259.8
电压经验参数ξ73.26×10-7氮气气体常RN2/[J·(kg·K)-1296.8
MAP图拟合参数P00288.2水蒸气常数Rv/[J·(kg·K)-1461.5
MAP图拟合参P01-0.000 463 1热比系数γ1.4
MAP图拟合参数P10-336.9转动惯量Jcp/(kg?m2-5.28×10-5
MAP图拟合参数P20-74.51供应歧管容积Vs/m30.005
MAP图拟合参P02-4.166×10-8环境压力Patm/106 Pa1.013 25
MAP图拟合参数P110.006 191环境温度Tatm/K298.15

图2

仿真模型验证"

图3

HOSM观测器原理图"

图4

输入电流图"

图5

HOSM与传统滑模观测对比图"

图6

三个测量量的观测对比图"

表2

观测误差ISE对比"

观测对象观测器
HOSMSMO
阳极氢气分压/Pa6 28982 520
阳极水蒸气分压/Pa216.7194.3
阴极氧气分压/Pa4 85428 260
阴极氮气分压/Pa4 464122 700
空压机电机转速/(rad·s-1821.445 070
供应管气压/Pa9 03898 250
供应管气体质量/kg3.996×10-71.563×10-6
阴极出气管压力/Pa551.6575.9
电堆阴极温度/K0.344 10.876 5
电堆阳极温度/K4.840.779 8
电堆温度/K3.693×10-85.354×10-13
电堆输出电压/Pa6.348154.8
空压机输出流量/(kg·s-12.163×10-71.78×10-6
1 张鉴,华青松,郑莉莉, 等.质子交换膜燃料电池建模综述[J]. 电源技术, 2019, 43(6): 1051-1053, 1082.
Zhang Jian, Hua Qing-song, Zheng Li-li, et al. A review of proton exchange membrane fuel cell modeling[J]. Power Technology, 2019, 43(6): 1051-1053, 1082.
2 文泽军, 闵凌云, 谢翌, 等. 质子交换膜燃料电池建模与控制的综述[J]. 电源技术, 2018, 42(11): 1757-1760.
Wen Ze-jun, Min Ling-yun, Xie Yi, et al. A review on modeling and control of proton exchange membrane fuel cells[J]. Power Technology, 2018, 42(11): 1757-1760.
3 Deng H, Li Q, Liu Z, et al. Low frequency current ripple mitigation of two stage three-phase PEMFC generation systems[J]. Journal of Power Electronics, 2016, 16(6): 2243-2257.
4 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J].吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy for fuel cell buses based on the principle of minimal value[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43.
5 李飞, 赵冬冬, 皇甫宜耿, 等. 适用于PEMFC系统状态估计的鲁棒非线性观测器[J]. 电源学报, 2019, 17(2): 19-25.
Li Fei, Zhao Dong-dong, Huangfu Yi-geng, et al. Robust nonlinear observer for state estimation of PEMFC systems[J]. Journal of Power Sources, 2019, 17(2): 19-25.
6 Yuan H, Dai H F, Wei X Z, et al. Model-based observers for internal states estimation and control of proton exchange membrane fuel cell system: a review[J]. Journal of Power Sources, 2020, 468: No. 228376.
7 Pukrushpan J T, Stefanopoulou A G, Peng H. Control of fuel cell breathing[J]. IEEE Control Systems Magazine, 2004, 24(2): 30-46.
8 Wang Y X, Chen Q, Ou K, et al. Time delay thermal control of a compact proton exchange membrane fuel cell against disturbances and noisy measurements[J]. Energy Conversion and Management, 2021, 244: No. 114444.
9 葛乐, 吉佩丝, 杨忠, 等. 基于扩张状态观测器的PEMFC电堆温度控制[J].电源技术, 2016, 40(5): 1020-1022, 1032.
Ge Le, Ji Pei-si, Yang Zhong, et al. Temperature control of PEMFC power stack based on expansion state observer[J]. Power Technology, 2016, 40(5): 1020-1022, 1032.
10 Rakhtala S M, Noei A R, Ghaderi R, et al. Control of oxygen excess ratio in a PEM fuel cell system using high-order sliding-mode controller and observer[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2015, 23(1): 255-278.
11 Pilloni A, Pisano A, Usai E. Observer-based air excess ratio control of a PEM fuel cell system via high-order sliding mode[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 5236-5246.
12 邓惠文, 李奇, 崔幼龙, 等. 基于多边界层的RNO质子交换膜燃料电池发电系统状态估计研究[J]. 中国电机工程学报, 2019, 39(5): 1532-1543.
Deng Hui-wen, Li Qi, Cui You-long, et al. Study on state estimation of RNO proton exchange membrane fuel cell power generation system based on multiple boundary layers[J]. Chinese Journal of Electrical Engineering, 2019, 39(5): 1532-1543.
13 Piffard M, Gerard M, Da Fonseca R, et al. Sliding mode observer for proton exchange membrane fuel cell: automotive application[J]. Journal of Power Sources, 2018, 388: 71-77.
14 Liu J X, Lin W Y, Alsaadi F, et al. Nonlinear observer design for PEM fuel cell power systems via second order sliding mode technique[J]. Neurocomputing, 2015, 168: 145-151.
15 Sankar K, Jana A K. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system[J]. Energy Conversion and Management, 2018, 171: 541-565.
16 Sankar K, Jana A K. Nonlinear control of a PEM fuel cell integrated system with water electrolyzer[J]. Chemical Engineering Research and Design, 2021, 171: 150-167.
17 洪凌. 车用燃料电池发电系统氢气回路控制[D].杭州:浙江大学控制科学与工程学院,2017.
Hong Ling. Hydrogen circuit control for automotive fuel cell power generation system[D]. Hangzhou: School of Control Science and Engineering, Zhejiang University, 2017.
18 Li D Z, Li C, Gao Z Q, et al. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 283: 452-463.
19 Zhao X Q, Li Y K, Liu Z X, et al. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3048-3056.
20 Kunusch C, Puleston P F, Mayosky M A, et al. Control-oriented modeling and experimental validation of a PEMFC generation system[J]. IEEE Transactions on Energy Conversion, 2011, 26(3): 851-861.
21 Wang Y, Li H, Feng H, et al. Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID[J]. Energy Conversion and Management, 2021, 249: No. 114851.
[1] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[2] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[3] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[4] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[5] 肖阳,王洁,刘孟军,杨发庆,张天瑶,兰巍. 质子交换膜燃料电池气体扩散层的力学改进模型[J]. 吉林大学学报(工学版), 2022, 52(9): 2147-2155.
[6] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[7] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[8] 高金武,王义琳,刘华洋,王艺达. 基于滑模观测器的质子交换膜燃料电池阴极进气系统解耦控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2156-2167.
[9] 陈凤祥,张俊宇,裴冯来,侯明涛,李其朋,李培庆,王洋洋,张卫东. 质子交换膜燃料电池氢气供应系统的建模及匹配设计[J]. 吉林大学学报(工学版), 2022, 52(9): 1982-1995.
[10] 刘镇宁,江柯,赵韬韬,樊文选,卢国龙. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报(工学版), 2022, 52(9): 2025-2033.
[11] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[12] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[13] 张恒,詹志刚,陈奔,隋邦杰,潘牧. 气体扩散层各向异性传输特性的孔尺度模拟[J]. 吉林大学学报(工学版), 2022, 52(9): 2055-2062.
[14] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[15] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!