吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (1): 197-209.doi: 10.13229/j.cnki.jdxbgxb20221145

• 交通运输工程·土木工程 • 上一篇    

基于分子动力学的生物质透层油稳定性

时爽(),林岚钦,马涛(),顾临皓,张燕宁   

  1. 东南大学 交通学院,南京 211189
  • 收稿日期:2022-10-25 出版日期:2023-01-01 发布日期:2023-07-23
  • 通讯作者: 马涛 E-mail:shishuang@seu.edu.cn;matao@seu.edu.cn
  • 作者简介:时爽(1990-),女,在站博士后. 研究方向:道路材料.E-mail: shishuang@seu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(52108404);中国博士后科学基金面上项目(2021M690613);江苏省科技厅青年基金项目(BK20210251)

Molecular dynamics‒based stability of biomass prime coat oil

Shuang SHI(),Lan-qin LIN,Tao MA(),Lin-hao GU,Yan-ning ZHANG   

  1. College of Transportation,Southeast University,Nanjing 211189,China
  • Received:2022-10-25 Online:2023-01-01 Published:2023-07-23
  • Contact: Tao MA E-mail:shishuang@seu.edu.cn;matao@seu.edu.cn

摘要:

为探究乳化剂掺量对生物质乳化沥青稳定性的影响机理,通过采用Material studio分子动力学模拟及宏微观试验对所制备的1%、3%和5%三种阴离子乳化剂掺量生物质乳化沥青稳定性展开分析。研究结果表明,适量的乳化剂可以降低油水界面间界面张力,扩大两相间的过渡区域,从而阻碍微粒间聚结,降低沉降速度保证乳化稳定性,随着乳化剂增多,会出现团块现象进而导致稳定性下降,由结果可知,3%阴离子乳化剂掺量生物质乳化沥青稳定性最好。

关键词: 道路工程, 稳定性, 分子动力学, 生物质乳化沥青, 粒径, 红外分析

Abstract:

To investigate the effect of different emulsifier contents on the stability performance of biomass emulsified asphalt, three types of emulsified asphalt with 1%, 3% and 5% anionic emulsifiers were prepared and analyzed by molecular dynamics simulation and macroscopic experiments. Firstly, the Molecular Simulation Software (Material Studio, MS) was used to construct a model of biomass emulsified asphalt with different emulsifier contents and the microscopic mechanism of the emulsifier was analyzed to improve the stability of the emulsified asphalt by the radial distribution function, interaction energy, interfacial layer thickness and solubility parameters of the emulsified asphalt system with different emulsifier contents. The results were validated by macro and micro tests including storage stability, particle size determination and infrared spectroscopy. The results show that at low emulsifier content, the emulsifier can reduce the interfacial tension between the oil-water interface and expand the transition region between the two phases (interfacial layer thickness), which will prevent interparticle agglomeration and reduce the emulsion particle size, thus reducing the settling rate and ensuring the stability of the emulsion. When the emulsifier content is further increased beyond the critical micelle concentration, the emulsifiers will agglomerate with each other and show larger peaks in the radial distribution function, and the phenomenon of emulsifier agglomeration will appear in the five-day storage stability test, resulting in a corresponding decrease in the proximity of the infrared absorption peak area ratio in the same wavelength band of the upper and lower layers of the biomass emulsified asphalt, and the emulsion stability decreases instead.

Key words: road engineering, stability, molecular dynamic, bio-oil emulsified asphalt, particle size, infrared analysis

中图分类号: 

  • A414

表1

基质沥青常规指标"

测试项目

25 ℃针入度

/0.1 mm

25 ℃延度

/cm

软化点/℃

60 ℃布氏黏度

/(Pa·s)

测试结果63.7>10047203
指标要求60~80>100>46>160
测试方法GB/ T0606-2011GB/ T0605-2011GB/ T0606-2011

GB/

T0625-

2011

表2

12组分基质沥青模型参数"

组 分分子式添加分子数

模型组分

/%

实际组分

/%

比例误差

/%

沥青质C42 H54 O113.0812.440.64
吡咯C66 H81 N1
噻吩C51 H62 S1
胶质喹啉磷C40 H59 N226.7826.620.16
硫异戊?二烯C40 H60 S1
苯并二?苯并噻吩C18 H10 S23
吡啶酚C36 H57 N2
三甲基?苯氧烷C29 H50 O2
芳香酚过氢萘C35 H441444.1244.620.50
二辛基?环己烷?萘C30 H462
饱和酚角鲨烷C30 H62416.0216.320.30
霍烷C35 H622

表3

生物质乳化沥青其余材料分子参数"

组分分子式分子量/(g·mol?1添加分子数与沥青比例
乳化剂

1%

3%

5%

C18H29O3NaS348.5

1

3

5

2.6

6.3

10.5

1%

3%

5%

H2O18.0

904

867

826

97.3

94.1

89.6

生物质油

软脂酸

亚麻酸

油酸

硬脂酸

C16 H32 O2

C18 H32 O2

C18 H34 O2

C18 H36 O2

256.4

280.5

282.5

284.5

1

2

2

1

9.1

图 1

生物质乳化沥青模型组成图"

图2

生物质乳化沥青密度"

表4

298 K下乳化沥青分子模型密度与实测值"

乳化剂掺量/%密度/(g·cm-3误差/%
模拟值测量值

1

3

5

0.972

0.964

0.977

0.994

0.989

0.993

2.2

2.5

1.6

图3

乳化沥青模型原子径向分布函数"

图4

不同乳化剂掺量乳化沥青的径向分布函数"

图5

5%乳化剂掺量的乳化剂聚拢现象"

图6

不同乳化剂掺量乳化沥青的相互作用能"

图7

生物质乳化沥青各组分沿Z轴的浓度分布"

表5

生物质乳化沥青各成分在不同乳化剂掺量下的内聚能密度和溶解度参数值"

成分参数乳化剂掺量
1%3%5%
乳化剂溶液

CED

/(J·cm3

105110421059
溶解度参数/(J·cm3?32.4232.2832.54
生物质沥青

CED

/(J·cm3

162.1152.3158.3
溶解度参数/(J·cm3?12.7312.3412.58
溶解度参数差值19.6919.9419.96

图8

生物质乳化沥青分子间氢键情况"

图9

乳化剂掺量对生物质乳化沥青储存稳定性能的影响"

表6

不同乳化剂掺量的生物质乳化沥青粒径情况"

材料乳化剂掺量
1%3%5%
D101.7131.5851.663
D201.9961.7811.956
D302.2231.9452.182
D402.4372.1012.389
D502.6532.2632.593
D602.8932.4452.812
D703.182.6613.06
D803.562.953.39
D904.233.423.9
体积平均粒径2.8672.4062.72
粒径跨度0.9480.8100.862

图10

三种乳化剂掺量的生物质乳化沥青粒径分布"

图11

不同乳化剂掺量的生物质乳化沥青粒径指标"

图12

不同乳化剂掺量下的生物质乳化沥青不同层位处的红外光谱图"

表7

不同乳化剂掺量的生物质乳化沥青蒸发残留物红外特征峰面积"

实验组波数(cm-1
294828491455137511511124628

上层-1%

下层-1%

差值/%

694.08

709.94

2.29

429.37

462.41

7.69

776.77

781.80

0.65

135.20

155.14

14.75

25.58

25.46

-0.44

15.79

14.10

-10.72

6.666

5.687

-14.69

上层-3%

下层-3%

差值/%

673.85

695.61

3.23

402.91

397.10

-1.44

723.20

749.34

3.61

119.53

117.21

-1.95

31.00

32.03

3.33

31.77

31.47

-0.93

53.324

54.202

1.65

上层-5%

下层-5%

差值/%

645.053

647.668

0.41

430.310

439.435

2.12

787.90

804.69

2.13

130.04

139.37

7.17

88.333

47.091

-46.69

63.055

36.106

-42.74

54.509

72.863

33.67

表8

储存稳定管上下支管乳化剂特征峰面积占比"

实验组乳化剂特征峰面积占基质沥青特征峰面积比值/%差值/%

上层-1%

下层-1%

2.31

2.15

0.16

上层-3%

下层-3%

6.05

6.01

0.04

上层-5%

下层-5%

10.31

7.68

2.63
1 屈鑫, 丁鹤洋,王超, 等. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022(19):1-11.
Qu Xin, Ding He-yang, Wang Chao, et al. Research on micro properties of bio-oil modified asphalt based on molecular dynamics simulation technique[J]. Materials Reports, 2022(19): 1-11.
2 李宁利, 朱壮壮, 栗培龙. 生物质油替代路用石油沥青的适用性研究[J]. 可再生能源, 2022, 40(4): 448-454.
Li Ning-li, Zhu Zhuang-zhuang, Li Pei-long. Study on applicability of biomass oil to replace asphalt for road use[J]. Renewable Energy Resources, 2022, 40(4): 448-454.
3 白爱明, 周新星. 生物质油再生沥青的自愈合性能研究[J]. 重庆交通大学学报:自然科学版, 2018, 37(8): 29-33.
Bai Ai-ming, Zhou Xin-xing. Self-healing properties of bio-oil regenerated asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018,37(8): 29-33.
4 张金喜, 张晗. 餐饮废油生物沥青路用性能的试验研究[J]. 北京工业大学学报, 2018,44(6): 904-909.
Zhang Jin-xi, Zhang Han. Laboratory evaluation of waste cooking oil-based bio-oil modified asphalt binder[J]. Journal of Beijing University of Technology, 2018, 44(6): 904-909.
5 Shi K, Fu Z, Song R, et al. Waste chicken fat oil as a bio-oil regenerator to restore the performance of aged asphalt: rheological properties and regeneration mechanism[J]. Road Materials and Pavement Design,2021: 1-25.
6 Girimath S, Singh D. Effects of bio-oil on performance characteristics of base and recycled asphalt pavement binders[J]. Construction and Building Materials, 2019, 227: 116684.
7 罗磊. 沥青与矿料界面相互作用的分子动力学模拟研究[D]. 西安: 长安大学交通学院, 2021.
Luo Lei. Molecular dynamics simulation of asphalt-aggregate interfacial interaction[D]. Xi'an: School of Transportation, Chang'an University, 2021.
8 范维玉, 赵品晖, 康剑翘, 等. 分子模拟技术在乳化沥青研究中的应用[J]. 中国石油大学学报:自然科学版, 2014, 38(6):179-185.
Fan Wei-yu, Zhao Pin-hui, Kang Jian-qiao, et al. Application of molecular simulation technology to emulsified asphalt study[J]. Journal of China University of Petroleum(Natural Science Edition), 2014, 38(6):179-185.
9 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093.
He Liang, Li Guan-nan, Zheng Yu-feng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Reports, 2020, 34(19): 19083-19093.
10 罗万力. 基于分子动力学模拟的阴离子沥青乳化剂界面活性研究[D]. 重庆:重庆交通大学交通运输学院, 2020.
Luo Wan-li. Study on interfacial activity of anionic asphalt emulsifier based on molecular dynamics simulation[D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2020.
11 Yu X, Wang J, Si J, et al. Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder[J]. Construction and Building Materials, 250:118868.
12 Yu C, Hu K, Yang Q, et al. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations[J]. Polymers, 2021, 13(10): 1658.
13 Li D D, Greenfield M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel,2014, 115: 347-356.
14 Wang Xu. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169.
15 Fardin, Rajesh. Molecular simulations of asphalt rheology: application of time–temperature superposition principle[J]. Journal of Rheology, 2018, 62(4): 941-954.
16 陈华鑫, 贺孟霜, 纪鑫和, 等. 沥青性能与沥青组分的灰色关联分析[J]. 长安大学学报: 自然科学版,2014, 34(3): 1-6.
Chen Hua-xin, He Meng-shuang, Ji Xin-he, et al. Gray correlation analysis of asphalt performance and four fractions[J]. Journal of Chang'an University(Natural Science Edition), 2014, 34(3): 1-6.
17 殷开梁. 分子动力学模拟的若干基础应用和理论[D].杭州: 浙江大学理学院,2006.
Yin Kai-liang. Some basic applications and theories of molecular dynamics simulation[D]. Hangzhou: School of Science, Zhejiang University, 2006.
18 丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D].重庆:重庆交通大学材料科学与工程学院, 2013.
Ding Yong-jie. Study on chemical structure characteristics of asphalt based on molecular simulation technology[D]. Chongqing: School of Materials Science and Engineering, Chongqing Jiaotong University, 2013.
19 李根泽. 基于分子模拟技术的路用沥青感温性研究[D]. 长春: 吉林大学交通学院, 2019.
Li Gen-ze. Study on temperature sensitivity of road asphalt based on molecular simulation technology[D].Changchun: College of Transportation, Jilin University, 2019.
20 康家祥. 非离子型环氧树脂乳化剂的制备及其性能研究[D]. 杭州: 浙江理工大学理学院, 2021.
Kang Jia-xiang. Study on the preparation and proper‐ties of non-ionic epoxy resin emulsifiers[D]. Hang‐zhou: College of Science, Zhejiang Sci-tech University, 2021.
21 李媛媛, 桑世林, 王凯杰, 等. 非离子型水性环氧树脂乳化剂的制备与性能研究[J]. 涂料工业, 2021, 51(9): 25-32.
Li Yuan-yuan, Sang Shi-lin, Wang Kai-jie, et al. Preparation and properties of nonionic waterborne epoxy resin emulsifier[J]. Paint & Coatings Industry, 2021, 51(9): 25-32.
22 李仙. 氯磺化聚乙烯改性丙烯酸酯水乳液及其相关分子动力学模拟[D]. 南京: 南京林业大学材料科学与工程学院, 2020.
Li Xian. Chlorosulfonated rubber modified acrylate water emulsion and its related molecular simulation[D]. Nanjing: School of Materials Science and Engineering, Nanjing Forestry University, 2020.
23 苏曼曼, 张洪亮, 张永平, 等. SBS与沥青相容性及力学性能的分子动力学模拟[J]. 长安大学学报:自然科学版, 2017, 37(3): 24-32.
Su Man-man, Zhang Hong-liang, Zhang Yong-ping, et al. Molecular dynamics simulation of compatibility and mechanical properties of sbs and asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(3): 24-32.
24 王岚, 张乐, 刘旸. 基于分子动力学的胶粉改性沥青中胶粉与沥青相容性研究[J]. 建筑材料学报, 2018, 21(4): 689-694.
Wang Lan, Zhang Le, Liu Yang. Compatibility of rubber powder and asphalt in rubber powder modified asphalt by molecular dynamics[J]. Journal of Building Materials, 2018, 21(4): 689-694.
25 Xu Tao, Li Chi-xuan, Fan Su-ying. Method for evaluating compatibility between sbs modifier and asphalt matrix using molecular dynamics models[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 4021207.
26 孔祥军. 长链烷基咪唑啉界面活性的构效关系研究[D]. 青岛:中国石油大学(华东)化学工程与环境学院, 2016.
Kong Xiang-jun. Study on structure-activity relationship of interfacial activity of long chain alkyl imidazoline[D]. Qingdao: College of Chemical Engineering and Environment), China University of Petroleum (East China), 2016.
27 Rivera J L, McCabe C, Cummings P T. Molecular simulations of liquid-liquid interfacial properties: Watern-alkane and water-methanoln-alkane systems[J]. Physical Review E, 2003, 67(1): 011603.
28 于立军. 阴离子表面活性剂在油水界面吸附行为的实验和理论研究[D]. 青岛:中国石油大学(华东)材料科学与工程学院, 2011.
Yu Li-jun. Experimental and theoretical study on adsorption behavior of anionic surfactants at oil-water interface[D]. Qingdao: School of Materials Science and Engineering, China University of Petroleum (East China), 2011.
29 李登辉, 李丽洁, 兰贯超, 等. SBS增韧石蜡/增塑剂共混相容性的分子动力学模拟[J]. 含能材料, 2018, 26(3): 223-229.
Li Deng-hui, Li Li-jie, Lan Guan-chao, et al. Molecular dynamics simulation of sbs toughened paraffin/plasticizer blend compatibility[J]. Energetic Materials, 2018, 26(3): 223-229.
30 武建民, 杜本发, 李洪珍. 基于乳化沥青颗粒平均粒径的透层油性能评价方法[J]. 公路, 2016, 61(7): 265-269.
Wu Jian-min, Du Ben-chao, Li Hong-zhen. Performance evaluation method of permeable oil based on average particle size of emulsified asphalt[J]. Highway, 2016, 61(7): 265-269.
31 何丽红, 温仙仙, 侯艺桐, 等. 阴离子乳化沥青粒径大小及分布影响因素分析[J]. 重庆交通大学学报:自然科学版, 2021, 40(6): 99-104.
He Li-hong, Wen Xian-xian, Hou Yi-tong, et al. Influence factors of particle size and distribution of anionic emulsified asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2021, 40(6): 99-104.
32 陶翔. 新型季铵盐沥青乳化剂的合成与性能研究[D]. 济南: 山东大学化学与化工学院, 2015.
Tao Xiang. Synthesis and properties of novel quaternary ammonium salt asphalt emulsifier[D]. Jinan: Shandong: School of Chemistry and Chemical Engineering, Shandong University, 2015.
33 Liu Hou. Influence of storage conditions on the stability of asphalt emulsion[J]. Petroleum Science and Technology,2017, 35(12): 1217-1223.
34 Kiihnl L, Braham A F. Developing a particle size specification for asphalt emulsion[J]. Construction and Building Materials, 2021, 293: 123414.
35 张虎. 乳化沥青颗粒粒径分布对沥青性能的影响[J]. 交通世界, 2016(19): 110-111.
Zhang Hu. Influence of emulsified asphalt particle size distribution on asphalt properties[J]. Transportation World, 2016(19): 110-111.
36 韦万峰, 郭鹏, 唐伯明. 再生沥青混合料新-旧沥青扩散混合效率研究综述[J]. 材料导报, 2017, 31(11): 109-114.
Wei Wan-feng, Guo Peng, Tang Bo-ming. Review of the research on diffusion efficiency of virgin-aged asphalt in recycled asphalt mixture[J]. Materials Reports, 2017, 31(11): 109-114.
37 全秀洁. 亲水基团对十二烷基阴离子乳化沥青稳定性及破乳过程的影响[D]. 重庆: 重庆交通大学交通运输学院, 2021.
Quan Xiu-jie. Effect of hydrophilic groups on stability and demulsification of dodecyl anionic emulsified asphalt[D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2021.
38 周艺, 李泉, 童瑶, 等. 再生剂对SBS改性沥青宏观性能与微观结构的影响[J]. 公路, 2022(6): 302-309.
Zhou Yi, Li Quan, Tong Yao, et al. Effect of regenerant on macroproperties and microstructure of sbs modified asphalt[J]. Highway, 2022(6): 302-309.
39 陈江,李响,韩路, 等. 废胎胶粉对沥青的改性机理研究[J]. 山西建筑, 2021, 47(1): 110-111, 196.
Chen Jiang, Li Xiang, Han Lu, et al. Study on modification mechanism of asphalt by waste tire rubber powder[J]. Shanxi Architecture, 2021, 47(1): 110-111, 196.
[1] 王艳敏,张伟琦,段广鑫,葛杨. 电子节气门的连续非奇异终端滑模控制[J]. 吉林大学学报(工学版), 2023, 53(7): 2127-2135.
[2] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[3] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[4] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[5] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[6] 汪少华,储堃,施德华,殷春芳,李春. 基于有限时间扩张状态观测的HEV鲁棒复合协调控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1272-1281.
[7] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[8] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[9] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[10] 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734.
[11] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[12] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
[13] 彭勇,章秀芳,郭泽宇,陆学元,李彦伟. 离散元法分析集料接触特性对沥青混合料剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 178-187.
[14] 孙雅珍,郑直,黄伟明,王金昌. 基于状态空间法的含裂缝水泥路面结构分析[J]. 吉林大学学报(工学版), 2023, 53(1): 188-196.
[15] 时成林,王勇,吴春利,宋文祝. 路堤挡土墙主动土压力计算方法修正[J]. 吉林大学学报(工学版), 2022, 52(6): 1394-1403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!