吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2519-2532.doi: 10.13229/j.cnki.jdxbgxb.20211258

• 交通运输工程·土木工程 • 上一篇    下一篇

弹性车轮对大跨斜拉桥车桥耦合振动的抑制特性

陈兆玮(),蒲前华   

  1. 重庆交通大学 机电与车辆工程学院,重庆 400074
  • 收稿日期:2021-11-23 出版日期:2023-09-01 发布日期:2023-10-09
  • 作者简介:陈兆玮(1988-),男,副教授,博士.研究方向:车桥耦合振动.E-mail:chenzhaowei_cq@163.com
  • 基金资助:
    国家自然科学基金项目(52008067);重庆市自然科学基金项目(CSTB2022NSCQ-MSX1193);重庆市教育委员会科学技术研究项目(KJZD-M202300701)

Suppression characteristics of vehicle⁃bridge coupling vibration of long⁃span cable⁃stayed bridge with resilient wheels

Zhao-wei CHEN(),Qian-hua PU   

  1. Mechatronics and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China
  • Received:2021-11-23 Online:2023-09-01 Published:2023-10-09

摘要:

为了从动力学角度探明地铁车辆-桥梁(特别是大跨斜拉桥)系统对弹性车轮的适应性,本文开展了大跨斜拉桥上弹性车轮对地铁车桥系统振动的影响及抑制特性研究。基于车辆-轨道耦合动力学理论,建立了考虑弹性车轮的地铁车辆-大跨斜拉桥系统耦合动力学模型;借助该模型,研究了长-短波不平顺联合激扰下弹性车轮对地铁车辆和大跨斜拉桥的振动特性的影响,并从时-频域角度探明了弹性车轮对地铁车辆-大跨斜拉桥系统的减振效果。研究结果表明:当地铁车辆通过大跨斜拉桥时,弹性车轮能有效降低轮轨作用力以及车轮和轴箱的振动;与传统刚性车轮相比,弹性车轮轮箍振动最剧烈,传统刚性车轮振动其次,而弹性车轮轮芯振动最小;基于本文所采用的弹性车轮动力学参数,弹性车轮的振动卓越频率集中在10~50 Hz,且在25 Hz左右存在峰值;桥梁垂向和横向振动主频均在1 Hz左右,且弹性车轮能有效降低大跨斜拉桥的中、低频振动。

关键词: 车辆工程, 弹性车轮, 大跨斜拉桥, 时-频分析, 减振

Abstract:

In order to prove the adaptability of the metro train-bridge (especially long-span bridge) system to resilient wheels from the perspective of dynamics, the influence of resilient wheels on the long-span cable-stayed bridge (LSCSB) on the vibration of the metro train-bridge system and its suppression characteristics was studied. Based on the vehicle-track coupling dynamics theory, a coupled dynamic model of metro train-LSCSB system considering resilient wheel was established. Adopting the model, the effect of resilient wheels on the vibration characteristics of metro train and LSCSB under the combined disturbance of long-short wave irregularities was studied, the damping effect of resilient wheel on metro train-LSCSB system is proved from time-frequency domain. The results show that when metro train running through, the resilient wheel can effectively reduce the wheel/rail force, vibration of the wheel and axle box. Compared with the traditional rigid wheel, the vibration of rim is the most intense, followed by the vibration of traditional rigid wheel, and the vibration of web is the smallest. Based on the propesd dynamic parameters of the resilient wheel, the excellent frequency of the resilient wheel vibration is concentrated in 10 Hz to 50 Hz, and there is a peak around 25 Hz. The main frequency of the bridge vertical and lateral vibration is about 1 Hz. The resilient wheels can effectively reduce the mid-low frequency vibrations of LSCSB.

Key words: vehicle engineering, resilient wheel, long-span cable-stayed bridge, time-frequency analysis, vibration reduction

中图分类号: 

  • U24

图1

考虑弹性车轮的地铁车辆-大跨斜拉桥动力学模型"

图2

弹性车轮受力分析图"

表1

弹性车轮各力符号"

符 号物理意义
FLFR左、右轮辋所受蠕滑力
NLNR左、右轮辋所受法向力
FhLFhR左、右弹性车轮橡胶悬挂作用力
FfLFfR左、右一系悬挂作用力
Mwg轮对重力

表2

地铁车辆各项参数符号"

符号物理意义
X、Y、Z纵向、横向以及垂向位移
?、φ、ψ纵向、横向以及垂向角位移
g、w、b、c轮箍、轮芯、构架以及车体的下标
Mg、Mw、Mb、Mc轮箍、轮对、构架以及车体的质量
Ig、Iw、Ib、Ic轮箍、轮对、构架以及车体的转动惯量
Kg、Kp、Ks轮箍、一系以及二系悬挂刚度
Cg、Cp、Cs弹性车轮、一系以及二系悬挂阻尼
dw一系悬挂横向距离的二分之一
d0弹性车轮橡胶悬挂横向距离的二分之一
a0左右轮轨接触点距离的二分之一
r0、rL、rR车轮名义滚动、左/右轮半径的二分之一
rw轮芯半径

图3

地铁车辆端视图"

图4

地铁车辆俯视图"

图5

地铁车辆侧视图"

表3

B型地铁车辆动力学参数"

参 数数值
定距/m15.7
轴距/m2.5
滚动圆直径/m0.42
轮对质量、轴箱质量/t1.86
构架质量/t4.28
车体质量/t41.61
轮对惯量/(t·m21.036
构架惯量/(t·m22.486
车体惯量/(t·m21708.23
一系刚度/(MN·m-11.07
二系刚度/(MN·m-10.155
橡胶层径向和轴向刚度/(MN·m-130
橡胶层径向与轴向阻尼/(kN·s·m-1300

表4

车体模态"

阶数弹性车轮刚性车轮
频率振型频率振型
10.39侧滚0.20侧滚
20.59纵向0.64纵向
30.73摇头0.67横移
40.97沉浮0.8摇头
50.99横移0.92沉浮
61.20点头1.24点头

表5

构架模态"

阶数弹性车轮刚性车轮
频率振型频率振型
16.32沉浮2.68侧滚
28.32侧滚4.40沉浮
312.07点头8.20点头
413.24纵向9.05摇头
519.20摇头10.86横移
623.48横移22.59纵向

表6

车轮模态"

阶数弹性车轮刚性车轮
轮箍轮芯
频率振型频率振型频率振型
161.25侧滚61.76侧滚37.39侧滚
287.79沉浮87.82沉浮135.43横移
3104.07横移116.76横移159.38沉浮
4139.97纵向136.14纵向161.26纵向
5989.15摇头989.20摇头525.90摇头
63145.40点头3145.40点头1594.20点头

图6

东水门长江大桥布局图"

图7

东水门长江大桥动力学模型"

表7

桥梁自振特性测试结果与理论计算结果的对比"

序号实测频率/Hz计算频率/Hz实测振型计算振型描述
10.3500.317主梁正对称横弯
20.4120.451主梁反对称竖弯
30.6510.665主梁正对称竖弯
40.8240.743主梁反对称横弯

图8

美国五级谱不平顺样本"

图9

Sato谱不平顺样本"

图10

轮轨垂向力"

图11

轮轨横向力"

图12

车轮垂向加速度"

图13

车轮横向加速度"

图14

轴箱垂向加速度"

图15

轴箱横向加速度"

图16

轮轨力"

图17

车轮垂向加速度"

图18

轮重减载率和脱轨系数"

图19

桥梁垂向振动"

图20

桥梁横向振动"

图21

简谐激励下的单自由度系统"

图22

动力放大系数β与频率f的关系"

图23

不同速度下桥梁振动"

1 Bouvet P, V'meent N, Coblentz A, et al. Optimization of resilient wheels for rolling noise control[J]. Journal of Sound and Vibration, 1996, 1993(1): 253-260.
2 Makoto I I. 弹性车轮对轨道动态性能的作用[J]. 国外铁道车辆, 1998(6): 34-40.
Makoto I I. The effect of elastic wheels on track dynamic performance[J]. Foreign Railway Vehicles, 1998(6): 34-40.
3 Remington P J. Wheel/rail rolling noise, I: theoretical analysis[J]. Acoust Soc Am, 1987, 81(6): 1805-1823.
4 黄彪, 戚援, 杜利清. 弹性车轮非线性有限元分析及疲劳强度校核[J]. 轨道交通装备与技术, 2014(2): 44-47.
Huang Biao, Qi Yuan, Du Li-qing. Nonlinear finite element analysis and fatigue strength check of elastic wheels[J]. Rail Transportation Equipment and Technology, 2014(2): 44-47.
5 戚援, 侯传伦, 杜利清, 等. 低地板车辆用块式橡胶弹性车轮的研制[C]∥第十七届中国科协年会, 广州, 2015: No.6.
6 Cigada A, Manzoni S, Vanali M. Geometry effects on the vibro-acoustic behavior of railway resilient wheels[J]. Vibration Control, 2011, 17(12): No.1761.
7 Lopez I, Vera E, Busturia J M, et al. Theoretical and experimental analysis of ring damped railway wheels[C]∥In Proceedings of the ISMA21 Conference, Leuven, Belgium, 1996: 787-794.
8 张乐. 弹性车轮结构刚度和强度研究[D]. 成都:西南交通大学机械工程学院, 2014.
Zhang Le. Research on stiffness and strength of elastic wheel structure[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2014.
9 邢璐璐, 李芾, 付政波. 弹性车轮车辆临界速度及曲线通过性能分析[J]. 电力机车与城轨车辆, 2012, 35(1): 25-28.
Xing Lu-lu, Li Fu, Fu Zheng-bo. Analysis of the critical speed and curve passing performance of flexible wheel vehicles[J]. Electric Locomotives and Urban Rail Vehicles, 2012, 35(1): 25-28.
10 孙明昌, 曾京, 徐志胜. 弹性轮对车辆-轨道垂向耦合系统动力学研究[J]. 铁道车辆, 2003(1):15-20.
Sun Ming-chang, Zeng Jing, Xu Zhi-sheng. Dynamics study of elastic wheelset vehicle-track vertical coupling system[J]. Railway Vehicle, 2003(1):15-20.
11 文娟. 弹性车轮动力学性能及纵向振动研究[D].西南交通大学机械工程学院, 2016.
Wen Juan. Research on dynamic performance and longitudinal vibration of elastic wheel[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2016.
12 杨阳, 丁军君, 李芾, 等. 弹性车轮等效刚度对车辆动力学性能的影响[J]. 中国铁道科学, 2018, 39(3): 63-70.
Yang Yang, Ding Jun-jun, Li Fu, et al. The effect of the equivalent stiffness of elastic wheels on vehicle dynamics[J]. China Railway Science, 2018, 39(3): 63-70.
13 郭文浩, 池茂儒, 杨飞, 等. 弹性轮对对轮轨动作用力的影响[J]. 机械, 2011, 38(9):1-7.
Guo Wen-hao, Chi Mao-ru, Yang Fei, et al. The effect of elastic wheel pair on wheel-rail action force[J]. Machinery, 2011, 38(9):1-7.
14 刘玉霞, 韩健, 周信, 等. 弹性车轮减振降噪特性分析[J]. 铁道学报, 2015, 37(6): 48-53.
Liu Yu-xia, Han Jian, Zhou Xin, et al. Analysis of vibration and noise reduction characteristics of elastic wheels[J]. Journal of the China Railway Society, 2015, 37(6):48-53.
15 周信. 地铁弹性车轮的减振降噪及动态特性研究[D]. 成都: 西南交通大学机械工程学院, 2019.
Zhou Xin. Research on vibration and noise reduction and dynamic characteristics of subway elastic wheels[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2019.
16 Han J, He Y, Xiao X, et al. Effect of control measures on wheel/rail noise when the vehicle curves[J]. Applied Sciences, 2017, 7(11): No.1144.
17 张小强, 黄振兴, 侯传伦. 弹性车轮在地铁车辆上的应用及分析[J]. 机车车辆工艺, 2020(3): 11-15.
Zhang Xiao-qiang, Huang Zhen-xing, Hou Chuan-lun. Application and analysis of elastic wheels on metro vehicles[J]. Locomotive and Rolling Stock Technology, 2020(3): 11-15.
18 Claus H, Schiehlen W. Dynamic stability and random vibrations of rigid and elastic wheelsets[J]. Nonlinear Dynamics, 2004, 36(2-4): 299-311.
19 Arai H. On the acoustic and dynamic characteristics of resilient wheel:1st report, comparison with various types of wheels[J]. Transactions of the Japan Society of Mechanical Engineers C, 1983, 49: 543-552.
20 李小珍, 强士中, 沈锐利. 高速列车-大跨度钢斜拉桥空间耦合振动响应研究[J]. 桥梁建设, 1998(4):67-70.
Li Xiao-zhen, Qiang Shi-zhong, Shen Rui-li. Research on spatial coupling vibration response of high-speed train and long-span steel cable-stayed bridge[J]. Bridge Construction, 1998(4): 67-70.
21 Zhai W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Yournal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214.
22 陈兆玮. 高速铁路桥墩沉降对行车性能影响的研究[D]. 成都:西南交通大学机械工程学院, 2017.
Chen Zhao-wei. Influence of pier settlement on dynamic performance of running trains in high-speed railway[D]. Chengdu: College of Mechanical Engineering, Southwest Jiaotong University, 2017.
23 向波, 周逸, 陈县伟. 东水门长江大桥动力特性监测系统研究[J]. 西部交通科技, 2015(11): 46-50.
Xiang Bo, Zhou Yi, Chen Xian-wei. Research on the dynamic characteristics monitoring system of dongshuimen yangtze river bridge[J]. Western Transportation Science and Technology, 2015(11): 46-50.
24 袁万城, 崔飞, 张启伟. 桥梁健康监测与状态评估的研究现状与发展[J]. 同济大学学报:自然科学版, 1999(2): 59-63.
Yuan Wan-cheng, Cui Fei, Zhang Qi-wei. Research status and development of bridge health monitoring and condition assessment[J]. Journal of Tongji University (Natural Science Edition), 1999(2): 59-63.
25 杨学志, 严普强, 张锻, 等. DP传感器研究及桥梁自振特性测试[J]. 振动.测试与诊断, 1997(2):53-58.
Yang Xue-zhi, Yan Pu-qiang, Zhang Duan, et al. DP sensor research and bridge natural vibration characteristics test[J]. Journal of Vibration,Measurement & Diagnosis, 1997(2): 53-58.
26 严普强, 乔陶鹏. 工程中的低频振动测量与其传感器[J]. 振动.测试与诊断, 2002(4): 39-75.
Yan Pu-qiang, Qiao Tao-peng. Low-frequency vibration measurement and its sensors in engineering[J]. Vibration, Testing and Diagnsis, 2002(4): 39-75.
27 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015.
28 Sato Y. Study on high-frequency vibration in track operation with high-speed trains[J]. Quarterly Report of RTRI, 1997, 18(3): 109-114.
29 杨阳, 李芾, 戚壮, 等. 弹性车轮动力学复合模型及其性能研究[J]. 中国铁道科学, 2015, 36(4): 93-100.
Yang Yang, Li Fu, Qi Zhuang, et al. Composite model of elastic wheel dynamics and its performance research[J]. China Railway Science, 2015, 36(4): 93-100.
30 Claus H, Len W S. Dynamic stability and random vibrations of rigid and elastic wheelsets[J]. Nonlinear Dynamics, 2004, (36): 299-311.
[1] 刘强,高大湧,刘献礼,贾儒鸿,周强,白峥言. 减振镗杆振动控制研究进展[J]. 吉林大学学报(工学版), 2023, 53(8): 2165-2184.
[2] 张树培,夏明悦,张玮,陈钊,陈义祥. 考虑非线性刚度的间隙球铰碰撞动力学建模与仿真[J]. 吉林大学学报(工学版), 2023, 53(8): 2227-2235.
[3] 陈辉,邵亚军. 基于惯性基准多传感器耦合的路面谱测量方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2254-2262.
[4] 刘平义,李晓婷,高偌霖,李海涛,魏文军,王亚. 车辆侧倾驱动机构设计与试验[J]. 吉林大学学报(工学版), 2023, 53(8): 2185-2192.
[5] 黄学劲,钟锦星,路京雨,赵霁,肖伟,袁新枚. 基于用户画像的电动汽车充电负荷预测方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2193-2200.
[6] 陈鑫,张冠宸,赵康明,王佳宁,杨立飞,司徒德蓉. 搭接焊缝对铝合金焊接结构轻量化设计的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1282-1288.
[7] 张勇,毛凤朝,刘水长,王青妤,潘神功,曾广胜. 基于Laplacian算法的汽车外流场畸变网格优化[J]. 吉林大学学报(工学版), 2023, 53(5): 1289-1296.
[8] 汪少华,储堃,施德华,殷春芳,李春. 基于有限时间扩张状态观测的HEV鲁棒复合协调控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1272-1281.
[9] 陈磊,王杨,董志圣,宋亚奇. 一种基于转向意图的车辆敏捷性控制策略[J]. 吉林大学学报(工学版), 2023, 53(5): 1257-1263.
[10] 尹燕莉,黄学江,潘小亮,王利团,詹森,张鑫新. 基于PID与Q⁃Learning的混合动力汽车队列分层控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1481-1489.
[11] 于贵申,陈鑫,武子涛,陈轶雄,张冠宸. AA6061⁃T6铝薄板无针搅拌摩擦点焊接头结构及性能分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1338-1344.
[12] 田彦涛,黄兴,卢辉遒,王凯歌,许富强. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480.
[13] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[14] 赵睿,李云,胡宏宇,高镇海. 基于V2I通信的交叉口车辆碰撞预警方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1019-1029.
[15] 陈小波,陈玲. 定位噪声统计特性未知的变分贝叶斯协同目标跟踪[J]. 吉林大学学报(工学版), 2023, 53(4): 1030-1039.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[5] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[6] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[7] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[9] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .