吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 44-54.doi: 10.13229/j.cnki.jdxbgxb.20220224
You-qun ZHAO(),Tao LIN,Fen LIN,Huan SHEN
摘要:
针对机械弹性电动轮(MEEW)式车辆的稳定性控制问题,考虑到车辆在实际行驶时存在的一些MEEW内部摄动和外部干扰,建立了存在非线性干扰项的2自由度车辆模型。基于上述模型对整车进行稳定性分层控制,在上层中分别设计了基于扩张状态观测器(ESO)的横摆角速度和质心侧偏角滑模控制器。通过ESO对非线性干扰项进行实时的观测和补偿。依据
中图分类号:
1 | Tang Xiao-lin, Hu Xiao-song, Yang Wei, et al. Novel torsional vibration modeling and assessment of a power-split hybrid electric vehicle equipped with a dual mass flywheel[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 1990-2000. |
2 | Wang Jun-nian, Gao Shou-lin, Wang Kai, et al. Wheel torque distribution optimization of four-wheel independent-drive electric vehicle for energy efficient driving[J]. Control Engineering Practice, 2021, 110:No.104779. |
3 | Ji Xue-wu, He Xiang-kun, Lv Chen, et al. A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation[J]. Vehicle System Dynamics, 2018, 56(6): 923-946. |
4 | Parra A, Tavernini D, Gruber P, et al. On nonlinear model predictive control for energy-efficient torque-vectoring[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 173-188. |
5 | 谢伟东, 徐威, 付志军,等. 分布式驱动电动汽车的近似最优转矩矢量控制[J]. 汽车工程, 2018, 40(11): 1308-1316. |
Xie Wei-dong, Xu Wei, Fu Zhi-jun, et al. Approximate optimal torque vectoring control for distributed drive electric vehicle[J]. Automotive Engineering, 2018, 40(11): 1308-1316. | |
6 | 赵又群, 李宇昊, 邓汇凡, 等. 基于Popov超稳定性的分布式电动汽车稳定性控制[J].吉林大学学报:工学版,2022,52(10):2225-2233. |
Zhao You-qun, Li Yu-hao, Deng Hui-fan,et al. Stability control of distributed electric vehicle based on Popov hyperstability[J]. Journal of Jilin University(Engineering and Technology Edition), 2022,52(10):2225-2233. | |
7 | Zhao You-qun, Zang Li-guo, Chen Yue-qiao, et al. Non-pneumatic mechanical elastic wheel natural dynamic characteristics and influencing factors[J]. Journal of Central South University, 2015, 22(5): 1707-1715. |
8 | Deng Yao-ji, Zhao You-qun, Xu Han, et al. Finite element modeling of interaction between non-pneumatic mechanical elastic wheel and soil[J]. Journal of Automobile Engineering, 2019, 233(13): 3293-3304. |
9 | Du Xian-bin, Zhao You-qun, Lin Fen, et al. Numerical and experimental investigation on the camber performance of a non-pneumatic mechanical elastic wheel[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2017, 39(9): 3315-3327. |
10 | 赵又群. 非充气机械弹性安全车轮理论与方法[M]. 北京: 科学出版社,2020. |
11 | Xu Han, Zhao You-qun, Ye Chao, et al. Integrated optimization for mechanical elastic wheel and suspension based on an improved artificial fish swarm algorithm[J]. Advances in Engineering Software, 2019,137:No.102722. |
12 | Wang Qiu-wei, Zhao You-qun, Xu Han, et al. Adaptive backstepping control with grey signal predictor for nonlinear active suspension system matching mechanical elastic wheel[J]. Mechanical Systems and Signal Processing, 2019, 131:97-111. |
13 | 李海青, 赵又群. 匹配机械弹性车轮的汽车稳定性分析[J]. 哈尔滨工业大学学报, 2019, 51(1): 71-79. |
Li Hai-qing, Zhao You-qun. Stability of vehicles with mechanical elastic wheel[J]. Journal of Harbin Institute of Technology, 2019, 51(1): 71-79. | |
14 | 郑鑫, 赵又群, 王秋伟, 等. 匹配机械弹性车轮的电子稳定控制器参数分析[J]. 中国机械工程, 2020, 31(23): 2883-2890. |
Zheng Xin, Zhao You-qun, Wang Qiu-wei, et al. Parameter analysis of electronic stability controller matching mechanical elastic wheels[J]. China Mechanical Engineering, 2020, 31(23): 2883-2890. | |
15 | Deng Hui-fan, Zhao You-qun, Feng Shi-lin, et al. Torque vectoring algorithm based on mechanical elastic electric wheels with consideration of the stability and economy[J]. Energy, 2021, 219:No.119643. |
16 | Pacejka H. Tire and Vehicle Dynamics[M].New York: Elsevier,2005. |
17 | 张荣芸, 黄鹤, 陈无畏, 等. 基于功能分配与多目标模糊决策的EPS和ESP协调控制[J]. 机械工程学报, 2014, 50(6): 99-106. |
Zhang Rong-yun, Huang He, Chen Wu-wei, et al. Coordinated control of EPS and ESP based on function allocation and multi-objective fuzzy decision[J]. Journal of Mechanical Engineering, 2014, 50(6): 99-106. | |
18 | Shibahata Y, Shimada K, Tomari T. Improvement of vehicle maneuverability by direct yaw moment control[J]. Vehicle System Dynamics, 1993, 22(5/6):465-481. |
19 | 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3): 13-18. |
Han Jing-qing. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18. | |
20 | Guo Bao-zhu, Zhao Zhi-liang. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems and Control Letters, 2011, 60(6): 420-430. |
21 | Khoo S, Xie L. Integral terminal sliding mode cooperative control of multi-robot networks[C]∥IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 2009: 969-973. |
22 | 王德平, 郭孔辉, 宗长富. 车辆动力学稳定性控制的仿真研究[J]. 汽车技术, 1999(2): 8-10. |
Wang De-ping, Guo Kong-hui, Zong Chang-fu. The simulation study of vehicle dynamic stability control[J]. Automobile Technology, 1999(2): 8-10. | |
23 | 王文伟, 赵一凡, 张伟,等. 多轴轮边驱动铰接客车的横摆稳定性控制策略[J]. 机械工程学报, 2020, 56(14): 161-172. |
Wang Wen-wei, Zhao Yi-fan, Zhang Wei, et al. Yaw stability control strategy of multi-wheel independent electric articulated bus[J]. Journal of Mechanical Engineering, 2020, 56(14): 161-172. | |
24 | Nocedal J, Wright S. Numerical Optimization[M]. Berlin: Springer, 2006. |
25 | Peng Hao-nan, Wang Wei-da, Xiang Chang-le, et al. Torque coordinated control of four in-wheel motor independent-drive vehicles with consideration of the safety and economy[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9604-9618. |
[1] | 王艳敏,张伟琦,段广鑫,葛杨. 电子节气门的连续非奇异终端滑模控制[J]. 吉林大学学报(工学版), 2023, 53(7): 2127-2135. |
[2] | 于雅静,郭健,王荣浩,秦伟,宋明武,向峥嵘. 基于状态观测器的多四旋翼无人机时变编队控制[J]. 吉林大学学报(工学版), 2023, 53(3): 871-882. |
[3] | 陈珑茏,冯天宇,吕宗阳,吴玉虎. 共轴倾转旋翼无人机有限时间滑模姿态控制[J]. 吉林大学学报(工学版), 2023, 53(3): 883-890. |
[4] | 王守瑞,靳伍银,芮执元,张霞. 基于快速非奇异终端滑模的三维天车负载摆动控制[J]. 吉林大学学报(工学版), 2023, 53(12): 3508-3517. |
[5] | 陈兵,马凯璇,刘洋,任江,张晨曦,赵韬硕. 双电机驱动履带车辆直驶稳定性分层控制策略[J]. 吉林大学学报(工学版), 2023, 53(10): 2752-2760. |
[6] | 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191. |
[7] | 张冲,胡云峰,宫洵,孙耀. 燃料电池阴极流量无模型自适应滑模控制器设计[J]. 吉林大学学报(工学版), 2022, 52(9): 2085-2095. |
[8] | 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758. |
[9] | 杨志军,高忠义,王丽君,黄观新,危宇泰. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2806-2815. |
[10] | 魏东辉,汪霭廷,计京鸿,房俊龙. 永磁直线同步电机自适应模糊分数阶滑模精密运动控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2295-2303. |
[11] | 龙江启,向锦涛,俞平,王骏骋. 适用于非线性主动悬架滑模控制的线性干扰观测器[J]. 吉林大学学报(工学版), 2021, 51(4): 1230-1240. |
[12] | 张家旭,王欣志,赵健,施正堂. 汽车高速换道避让路径规划及离散滑模跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(3): 1081-1090. |
[13] | 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555. |
[14] | 吴爱国,韩俊庆,董娜. 基于极局部模型的机械臂自适应滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1905-1912. |
[15] | 王伟,赵健廷,胡宽荣,郭永仓. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(2): 464-471. |
|