吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 44-54.doi: 10.13229/j.cnki.jdxbgxb.20220224

• 车辆工程·机械工程 • 上一篇    下一篇

基于ESO的机械弹性电动轮式车辆稳定性控制

赵又群(),林涛,林棻,沈峘   

  1. 南京航空航天大学 能源与动力学院,南京 210016
  • 收稿日期:2022-03-07 出版日期:2024-01-30 发布日期:2024-03-28
  • 作者简介:赵又群(1968-),男,教授,博士.研究方向:车辆动力学与控制.E-mail:yqzhao@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(52272397);高机动防暴车辆技术国家工程实验室开放基金项目(B20210017);中国航天一院创新基金项目(HTF20200960);中央高校基本科研业务费专项资金项目(NP2020407)

Stability control of with mechanical elastic electric wheeled vehicles based on extended state observer

You-qun ZHAO(),Tao LIN,Fen LIN,Huan SHEN   

  1. College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2022-03-07 Online:2024-01-30 Published:2024-03-28

摘要:

针对机械弹性电动轮(MEEW)式车辆的稳定性控制问题,考虑到车辆在实际行驶时存在的一些MEEW内部摄动和外部干扰,建立了存在非线性干扰项的2自由度车辆模型。基于上述模型对整车进行稳定性分层控制,在上层中分别设计了基于扩张状态观测器(ESO)的横摆角速度和质心侧偏角滑模控制器。通过ESO对非线性干扰项进行实时的观测和补偿。依据β-β˙相平面对车辆的稳定性区域进行划分,并基于此对上述两个控制器进行平滑切换。在下层控制器中,基于二次规划方法进行转矩分配。仿真实验结果表明:在考虑干扰的情况下,本文横摆稳定性控制器能够很好地控制匹配MEEW的分布式驱动电动车的稳定性。

关键词: 扩张状态观测器, 机械弹性电动轮, 横摆稳定性控制, 非线性干扰项, 滑模控制

Abstract:

For the stability control problem of vehicles with mechanical elastic electric wheels(MEEW), considering the uncertain perturbation of MEEW's and external interference during actual driving, a 2-DOF vehicle model with nonlinear interference term was established. The vehicle's stability control strategy was made of two parts. In the upper layer, a yaw rate sliding mode controller and a sideslip angle sliding mode controller based on extended state observer(ESO) were designed respectively. By using ESO, the nonlinear interference items were observed and compensated in real time. After dividing the stability area of the vehicle according to the β-β˙ phase plane, the above two controllers are switched. In the lower controller, the torque distribution was carried out based on the quadratic programming method. The simulation results show that the proposed control strategy can well control the stability of distributed driven electric vehicle which matchs MEEW.

Key words: extended state observer, mechanical elastic electric wheels, yaw stability control, nonlinear disturbance term, sliding mode control

中图分类号: 

  • U461.6

图1

机械弹性电动轮结构"

图2

MEEW纵向力和侧偏力拟合曲线"

表1

轮胎参数识别结果"

参数FZ /kN
101520
Bx3.713.874.44
Cx2.202.111.95
Dx6 719.2010 175.3213 352.04
Ex0.920.810.77
By11.009.137.93
Cy0.700.920.96
Dy9 857.2612 888.6817 057.95
Ey-1.30-1.00-0.75

图3

控制策略框架"

图4

稳定性边界划分"

表2

车辆参数"

参数数值
车辆质量m/kg1270
转动惯量Iz /(kg·m21536.7
质心到前轴距离a/m1.015
质心到后轴距离b/m1.895
轮距c/m1.675
轮胎滚动半径R/m0.325
前轮等效刚度kf/(N·rad-1-126 050
后轮等效刚度kr/(N·rad-1-114 590

图5

质心侧偏角变化曲线"

图6

横摆角速度变化曲线"

图7

四轮转矩"

图8

Δd2 和Δd3 的观测结果"

图9

ESO对横摆角速度的观测曲线"

图10

ESO对质心侧偏角的观测曲线"

图11

计算时间对比(Δd3)"

图12

计算时间对比(Δd2)"

1 Tang Xiao-lin, Hu Xiao-song, Yang Wei, et al. Novel torsional vibration modeling and assessment of a power-split hybrid electric vehicle equipped with a dual mass flywheel[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 1990-2000.
2 Wang Jun-nian, Gao Shou-lin, Wang Kai, et al. Wheel torque distribution optimization of four-wheel independent-drive electric vehicle for energy efficient driving[J]. Control Engineering Practice, 2021, 110:No.104779.
3 Ji Xue-wu, He Xiang-kun, Lv Chen, et al. A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation[J]. Vehicle System Dynamics, 2018, 56(6): 923-946.
4 Parra A, Tavernini D, Gruber P, et al. On nonlinear model predictive control for energy-efficient torque-vectoring[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 173-188.
5 谢伟东, 徐威, 付志军,等. 分布式驱动电动汽车的近似最优转矩矢量控制[J]. 汽车工程, 2018, 40(11): 1308-1316.
Xie Wei-dong, Xu Wei, Fu Zhi-jun, et al. Approximate optimal torque vectoring control for distributed drive electric vehicle[J]. Automotive Engineering, 2018, 40(11): 1308-1316.
6 赵又群, 李宇昊, 邓汇凡, 等. 基于Popov超稳定性的分布式电动汽车稳定性控制[J].吉林大学学报:工学版,2022,52(10):2225-2233.
Zhao You-qun, Li Yu-hao, Deng Hui-fan,et al. Stability control of distributed electric vehicle based on Popov hyperstability[J]. Journal of Jilin University(Engineering and Technology Edition), 2022,52(10):2225-2233.
7 Zhao You-qun, Zang Li-guo, Chen Yue-qiao, et al. Non-pneumatic mechanical elastic wheel natural dynamic characteristics and influencing factors[J]. Journal of Central South University, 2015, 22(5): 1707-1715.
8 Deng Yao-ji, Zhao You-qun, Xu Han, et al. Finite element modeling of interaction between non-pneumatic mechanical elastic wheel and soil[J]. Journal of Automobile Engineering, 2019, 233(13): 3293-3304.
9 Du Xian-bin, Zhao You-qun, Lin Fen, et al. Numerical and experimental investigation on the camber performance of a non-pneumatic mechanical elastic wheel[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2017, 39(9): 3315-3327.
10 赵又群. 非充气机械弹性安全车轮理论与方法[M]. 北京: 科学出版社,2020.
11 Xu Han, Zhao You-qun, Ye Chao, et al. Integrated optimization for mechanical elastic wheel and suspension based on an improved artificial fish swarm algorithm[J]. Advances in Engineering Software, 2019,137:No.102722.
12 Wang Qiu-wei, Zhao You-qun, Xu Han, et al. Adaptive backstepping control with grey signal predictor for nonlinear active suspension system matching mechanical elastic wheel[J]. Mechanical Systems and Signal Processing, 2019, 131:97-111.
13 李海青, 赵又群. 匹配机械弹性车轮的汽车稳定性分析[J]. 哈尔滨工业大学学报, 2019, 51(1): 71-79.
Li Hai-qing, Zhao You-qun. Stability of vehicles with mechanical elastic wheel[J]. Journal of Harbin Institute of Technology, 2019, 51(1): 71-79.
14 郑鑫, 赵又群, 王秋伟, 等. 匹配机械弹性车轮的电子稳定控制器参数分析[J]. 中国机械工程, 2020, 31(23): 2883-2890.
Zheng Xin, Zhao You-qun, Wang Qiu-wei, et al. Parameter analysis of electronic stability controller matching mechanical elastic wheels[J]. China Mechanical Engineering, 2020, 31(23): 2883-2890.
15 Deng Hui-fan, Zhao You-qun, Feng Shi-lin, et al. Torque vectoring algorithm based on mechanical elastic electric wheels with consideration of the stability and economy[J]. Energy, 2021, 219:No.119643.
16 Pacejka H. Tire and Vehicle Dynamics[M].New York: Elsevier,2005.
17 张荣芸, 黄鹤, 陈无畏, 等. 基于功能分配与多目标模糊决策的EPS和ESP协调控制[J]. 机械工程学报, 2014, 50(6): 99-106.
Zhang Rong-yun, Huang He, Chen Wu-wei, et al. Coordinated control of EPS and ESP based on function allocation and multi-objective fuzzy decision[J]. Journal of Mechanical Engineering, 2014, 50(6): 99-106.
18 Shibahata Y, Shimada K, Tomari T. Improvement of vehicle maneuverability by direct yaw moment control[J]. Vehicle System Dynamics, 1993, 22(5/6):465-481.
19 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3): 13-18.
Han Jing-qing. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18.
20 Guo Bao-zhu, Zhao Zhi-liang. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems and Control Letters, 2011, 60(6): 420-430.
21 Khoo S, Xie L. Integral terminal sliding mode cooperative control of multi-robot networks[C]∥IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 2009: 969-973.
22 王德平, 郭孔辉, 宗长富. 车辆动力学稳定性控制的仿真研究[J]. 汽车技术, 1999(2): 8-10.
Wang De-ping, Guo Kong-hui, Zong Chang-fu. The simulation study of vehicle dynamic stability control[J]. Automobile Technology, 1999(2): 8-10.
23 王文伟, 赵一凡, 张伟,等. 多轴轮边驱动铰接客车的横摆稳定性控制策略[J]. 机械工程学报, 2020, 56(14): 161-172.
Wang Wen-wei, Zhao Yi-fan, Zhang Wei, et al. Yaw stability control strategy of multi-wheel independent electric articulated bus[J]. Journal of Mechanical Engineering, 2020, 56(14): 161-172.
24 Nocedal J, Wright S. Numerical Optimization[M]. Berlin: Springer, 2006.
25 Peng Hao-nan, Wang Wei-da, Xiang Chang-le, et al. Torque coordinated control of four in-wheel motor independent-drive vehicles with consideration of the safety and economy[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9604-9618.
[1] 王艳敏,张伟琦,段广鑫,葛杨. 电子节气门的连续非奇异终端滑模控制[J]. 吉林大学学报(工学版), 2023, 53(7): 2127-2135.
[2] 于雅静,郭健,王荣浩,秦伟,宋明武,向峥嵘. 基于状态观测器的多四旋翼无人机时变编队控制[J]. 吉林大学学报(工学版), 2023, 53(3): 871-882.
[3] 陈珑茏,冯天宇,吕宗阳,吴玉虎. 共轴倾转旋翼无人机有限时间滑模姿态控制[J]. 吉林大学学报(工学版), 2023, 53(3): 883-890.
[4] 王守瑞,靳伍银,芮执元,张霞. 基于快速非奇异终端滑模的三维天车负载摆动控制[J]. 吉林大学学报(工学版), 2023, 53(12): 3508-3517.
[5] 陈兵,马凯璇,刘洋,任江,张晨曦,赵韬硕. 双电机驱动履带车辆直驶稳定性分层控制策略[J]. 吉林大学学报(工学版), 2023, 53(10): 2752-2760.
[6] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[7] 张冲,胡云峰,宫洵,孙耀. 燃料电池阴极流量无模型自适应滑模控制器设计[J]. 吉林大学学报(工学版), 2022, 52(9): 2085-2095.
[8] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[9] 杨志军,高忠义,王丽君,黄观新,危宇泰. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2806-2815.
[10] 魏东辉,汪霭廷,计京鸿,房俊龙. 永磁直线同步电机自适应模糊分数阶滑模精密运动控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2295-2303.
[11] 龙江启,向锦涛,俞平,王骏骋. 适用于非线性主动悬架滑模控制的线性干扰观测器[J]. 吉林大学学报(工学版), 2021, 51(4): 1230-1240.
[12] 张家旭,王欣志,赵健,施正堂. 汽车高速换道避让路径规划及离散滑模跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(3): 1081-1090.
[13] 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555.
[14] 吴爱国,韩俊庆,董娜. 基于极局部模型的机械臂自适应滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1905-1912.
[15] 王伟,赵健廷,胡宽荣,郭永仓. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(2): 464-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!