吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (2): 267-279.doi: 10.13229/j.cnki.jdxbgxb20211080

• 综述 • 上一篇    

机电装备健康状态评估研究进展及发展趋势

李国发1,2(),王彦博1,2,何佳龙1,2(),王继利1,2   

  1. 1.吉林大学 数控装备可靠性教育部重点实验室,长春 130022
    2.吉林大学 机械与航空航天工程学院,长春 130022
  • 收稿日期:2021-10-22 出版日期:2022-02-01 发布日期:2022-02-17
  • 通讯作者: 何佳龙 E-mail:ligf@jlu.edu.cn;hejl@jlu.edu.cn
  • 作者简介:李国发(1970-),男,教授,博士.研究方向:数控装备可靠性理论与技术,预测性维护.E-mail:ligf@jlu.edu.cn
  • 基金资助:
    吉林省科技发展计划项目(20210201055GX)

Research progress and development trend of health assessment of electromechanical equipment

Guo-fa LI1,2(),Yan-bo WANG1,2,Jia-long HE1,2(),Ji-li WANG1,2   

  1. 1.Key Laboratory of CNC Equipment Reliability,Ministry of Education,Jilin University,Changchun 130022,China
    2.College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2021-10-22 Online:2022-02-01 Published:2022-02-17
  • Contact: Jia-long HE E-mail:ligf@jlu.edu.cn;hejl@jlu.edu.cn

摘要:

机电装备的维修、保养直接影响其综合利用效率和使用寿命,健康状态评估是制定装备维护策略、管理维修资源的重要依据,是实现装备预测性维护、故障预测和健康管理的前提。传统的机电装备健康状态评估方法存在过分依赖专家经验、无法处理大规模数据、准确度低等缺点,难以满足现代机电装备健康管理技术的需求。本文在梳理、分析国内外机电装备健康状态评估最新研究成果的基础上,从信号获取、特征提取、健康状态等级划分和健康状态评估四个关键环节,综述了机电装备健康状态评估方法的研究进展和发展动态,指出了机电装备健康状态评估相关技术面临的挑战及解决途径。

关键词: 机械工程, 机电装备, 特征提取, 健康状态等级划分, 健康状态评估

Abstract:

The maintenance and repair of electromechanical equipment such as aerospace equipment, high-grade CNC machine tools and wind power generation equipment directly affect its comprehensive efficiency and service life. Health assessment is the basis of maintenance strategy formulation and maintenance resource management. It is the premise of predictive maintenance, fault prediction and health management. The traditional health assessment method has the disadvantages of relying too much on expert experience, unable to process large-scale data and low accuracy, which is difficult to meet the needs of modern electromechanical equipment health management technology. On the basis of combing and analyzing the latest research results of health status assessment of electromechanical equipment at home and abroad, this paper summarizes the research progress and development trend of health assessment of electromechanical equipment from four key links: signal acquisition, feature extraction, health status division and health assessment; The challenges faced by the related technologies of health assessment of electromechanical equipment are pointed out; Finally, the solutions and development trends to deal with these challenges are discussed.

Key words: mechanical engineering, electromechanical equipment, feature extraction, health status classification, health assessment

中图分类号: 

  • TH17

图1

机电装备健康状态评估流程图"

表1

常见机电装备的监测信号"

研究对象监测信号文献
风电机组齿轮箱温度、转子转速、有功功率、相电压、相电流、电网频率、轴承振动、齿轮箱润滑油压力等[6-11]
航空发动机燃油流量等[12,13]
燃气涡轮发动机低压转速、高压转速等[14,15]
涡轮喷气发动机低压转速、高压转速、高压压气机入口压力和温度等[16]
涡扇发动机气路风扇风扇振动、风扇出口温度[17]
油砂泵振动[18,19]
船用柴油机交流发电机有功功率、冷却系统出口温度、油压、湿度等[20]
变压器油纸绝缘系统乙烯、乙烷、一氧化碳、二氧化碳、氢、乙炔、甲烷等的浓度[21]
在轨卫星轨道角速度、磁感应强度、俯仰角等[22]
天波超视距雷达输出功率、精度、角度等[23]
飞机液压系统转速、工作温度、出口压力、流量等[24]
滚珠丝杠反向间隙、螺距误差[25,26]
陀螺仪振动、温度、漂移(x轴和y轴)、供电电压和功率[27]
轴承振动[28-34]
刀具振动、噪声、主轴电机电流[35-37]

表2

时频分析方法对比"

方法窗函数聚集性效率抗噪性文献
小波分解多分辨最低较高较高[38]
小波包分解多分辨[41]
变分模态分解较低较低[42]
局部特征尺度分解较高[43]
希尔伯特黄变换最高最低最低[44]

表3

数据驱动方法的优缺点"

方法优点缺点
神经网络学习能力强、对噪声数据鲁棒性和容错性较强、有联想能力、能逼近任意非线性关系。需要较多的训练样本、较低的泛化能力、超参数较多、可解释性差、训练过程费时、易陷入局部极值点。
HMM及其变种对时间序列过程的动态建模能力很强。初始模型的选取问题、算法下溢问题、过度拟合问题
贝叶斯网络变量之间的依赖关系采用有向无环图表示、融入了专家领域知识、可以根据训练集的样本实时更新模型的结构和参数。贝叶斯网络的学习、精确推理和近似推理均是不存在多项式时间算法的问题。
SVM及其变种良好的泛化能力、适用于高维和小样本问题。训练样本集的增大会造成过拟合和时空复杂度的增加、核函数必须是半正定的、对缺失数据敏感。
集成学习对于数据结构复杂、数据量大、数据质量参差不齐等情况,表现优异。评估结果容易受到弱学习器数目的影响。
1 曾声奎, Pecht M G, 吴际. 故障预测与健康管理(PHM)技术的现状与发展[J]. 航空学报, 2005, 26(5): 610-632.
Zeng Sheng-kui, Pecht M G, Wu Ji. Status and development of failure prediction and health management (PHM) technology[J]. Acta Aeronautica Sinica, 2005, 26(5): 610-632.
2 国家制造强国建设战略咨询委员会. 中国制造2025蓝皮书(2017)[M]. 北京: 电子工业出版社, 2017.
3 徐庆宏, 任和, 马小骏. 民用飞机实时监控与健康管理技术[M]. 上海: 上海交通大学出版社, 2018.
4 刘宗长. 从人工智能到工业智能[J]. 软件和集成电路, 2018(6): 34-39.
Liu Zong-chang. From artificial intelligence to industrial intelligence[J]. Software and Integrated Circuits, 2018(6): 34-39.
5 李杰.云上工业智能[M].北京:中信出版集团,2017.
6 董兴辉, 张鑫淼, 郑凯, 等. 基于组合赋权和云模型的风电机组健康状态评估[J]. 太阳能学报, 2018, 2(4): 68-75.
Dong Xing-hui, Zhang Xin-miao, Zheng Kai, et al. Wind turbine health status assessment based on combined weighting and cloud model[J]. Acta Energia Sinica, 2018, 2(4): 68-75.
7 Zheng K, Han L N, Guo S L, et al. Fuzzy synthetic condition assessment of wind turbine based on combination weighting and cloud model[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(6): 4563-4572.
8 Liu T I, Song S D, Liu G, et al. Online monitoring and measurements of tool wear for precision turning of stainless steel parts[J]. International Journal of Advanced Manufacturing Technology, 2017, 65(9-12): 1397-1407.
9 胡姚刚, 李辉, 刘海涛, 等. 基于多类证据体方法的风电机组健康状态评估[J]. 太阳能学报, 2018, 39(2): 256-265.
Hu Yao-gang, Li Hui, Liu Hai-tao, et al. Wind turbine health status assessment based on multi-class evidence body method[J]. Acta Energia Sinica, 2018, 39(2): 256-265.
10 Sun Z X, Sun H X. Health status assessment for wind turbine with recurrent neural networks[J]. Mathematical Problems in Engineering. DOI: 10.1155/2018/6972481.
doi: 10.1155/2018/6972481
11 董玉亮, 顾煜炯. 基于保局投影与自组织映射的风电机组故障预警方法[J]. 太阳能学报, 2015, 36(5): 1123-1129.
Dong Yu-liang, Gu Yu-jiong. Wind turbine fault warning method based on security bureau projection and self-organizing mapping[J]. Acta Energia Sinica, 2015, 36(5): 1123-1129.
12 钟诗胜, 雷达. 一种可用于航空发动机健康状态预测的动态集成极端学习机模型[J]. 航空动力学报, 2016, 29(9): 2085-2090.
Zhong Shi-sheng, Lei Da. A dynamic integrated extreme learning machine model that can be used to predict the health status of aero engines[J]. Journal of Aeronautical Dynamics, 2016, 29(9): 2085-2090.
13 Tamilselvan P, Wang P F. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2020, 115: 124-135.
14 Ma M, Sun C, Chen X F. Discriminative deep belief networks with ant colony optimization for health status assessment of machine[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(12): 3115-3125.
15 Hanachi H, Liu J, Banerjee A, et al. A physics-based modeling approach for performance monitoring in gas turbine engines[J]. IEEE Transactions on Reliability, 2015, 64(1): 197-205.
16 陈煜, 鞠红飞, 鲁峰, 等. 涡喷发动机健康状态的带约束非线性滤波估计[J]. 推进技术, 2016, 37(4): 741-748.
Chen Yu, Ju Hong-fei, Lu Feng, et al. Constrained nonlinear filtering estimation of turbojet engine health state[J]. Propulsion Technology, 2016, 37(4): 741-748.
17 Yin X J, Wang Z L, Zhang B C, et al. Health estimation of fan based on belief-rule-base expert system in turbofan engine gas-path[J]. Advances in Mechanical Engineering, 2017, 9(3): 1-11.
18 Di Maio F, Hu J, Tse P, et al. Ensemble-approaches for clustering health status of oil sand pumps[J]. Expert Systems with Applications, 2020, 39(5): 4847-4859.
19 王浩任, 黄亦翔, 赵帅, 等. 基于小波包和拉普拉斯特征值映射的柱塞泵健康评估方法[J]. 振动与冲击, 2017, 36(22): 45-50.
Wang Hao-ren, Huang Yi-xiang, Zhao Shuai, et al. Health assessment method of plunger pump based on wavelet packet and laplace eigenvalue mapping[J]. Journal of Vibration and Shock, 2017, 36(22): 45-50.
20 Diez-Olivan A, Pagan J A, Khoa N L D, et al. Kernel-based support vector machines for automated health status assessment in monitoring sensor data[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(1-4): 327-340.
21 Arshad M, Islam S M, Khaliq A. Fuzzy logic approach in power transformers management and decision making[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 21(5): 2343-2354.
22 王亮, 吕卫民, 金永川. 一种多类型证据的合成评估方法[J]. 控制与决策, 2017, 12(11): 1973-1978.
Wang Liang, Lv Wei-min, Jin Yong-chuan. A composite evaluation method for multiple types of evidence[J]. Control and Decision, 2017, 12(11): 1973-1978.
23 Cheng J, Yu M. OTHR health status assessment using grey clustering method[C]∥3rd International Conference on Mechanical, Control and Computer Engineering, Huhhot, 2018: 494-497.
24 崔建国, 林泽力, 吕瑞, 等. 基于模糊灰色聚类和组合赋权法的飞机健康状态综合评估方法[J]. 航空学报, 2014, 35(3): 764-772.
Cui Jian-guo, Lin Ze-li, Lv Rui, et al. Comprehensive assessment method of aircraft health status based on fuzzy grey clustering and combined weighting method[J]. Acta Aeronautica Sinica, 2014, 35(3): 764-772.
25 Wen J, Gao H L. Degradation assessment for the ball screw with variational autoencoder and kernel density estimation[J]. Advances in Mechanical Engineering, 2018, 10(9): 1-12.
26 邓超, 孙耀宗, 李嵘, 等. 基于隐Markov模型的重型数控机床健康状态评估[J]. 计算机集成制造系统, 2013, 19(3): 552-558.
Deng Chao, Sun Yao-zong, Li Rong, et al. Health status assessment of heavy CNC machine tools based on hidden markov model[J]. Computer Integrated Manufacturing System, 2013, 19(3): 552-558.
27 谷梦瑶, 陈友玲, 王新龙. 多退化变量下基于实时健康度的相似性寿命预测方法[J]. 计算机集成制造系统, 2017, 23(2): 362-372.
Gu Meng-yao, Chen You-ling, Wang Xin-long. Similarity life prediction method based on real-time health under multiple degradation variables[J]. Computer Integrated Manufacturing System, 2017, 23(2): 362-372.
28 Yang J Y, Zhang Y Y, Zhu Y S. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J]. Mechanical Systems and Signal Processing, 2017, 21(5): 2012-2024.
29 Jiang H M, Chen J, Dong G M. Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment[J]. Mechanical Systems and Signal Processing, 2016, 72: 184-205.
30 Yin X J, Zhang B C, Zhou Z J, et al. A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base[J]. Microelectronics Reliability, 2018, 84: 187-196.
31 李巍华, 李静, 张绍辉. 连续隐半马尔科夫模型在轴承性能退化评估中的应用[J]. 振动工程学报, 2016, 27(4): 613-620.
Li Wei-hua, Li Jing, Zhang Shao-hui. Application of continuous hidden semi-Markov model in bearing performance degradation assessment[J]. Journal of Vibration Engineering, 2016, 27(4): 613-620.
32 Liao Z R, Gao D, Lu Y, et al. Multi-scale hybrid HMM for tool wear condition monitoring[J]. International Journal of Advanced Manufacturing Technology, 2016, 84: 2437-2448.
33 Lu C, Li T Y, Liu H M. Online milling tool condition monitoring with a single continuous hidden Markov models approach[J]. Journal of Vibroengineering, 2017, 16(5): 2448-2457.
34 Yu J S, Liang S, Tang D Y, et al. A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction[J]. International Journal of Advanced Manufacturing Technology, 2017, 91: 201-211.
35 Kong D D, Chen Y J, Li N. Gaussian process regression for tool wear prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 556-574.
36 Kong D D, Chen Y J, Li N. Hidden semi-markov model-based method for tool wear estimation in milling process[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 3647-3657.
37 Kong D D, Chen Y J, Li N. Force-based tool wear estimation for milling process using gaussian mixture hidden markov models[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 2853-2865.
38 刘美芳, 余建波, 尹纪庭. 基于贝叶斯推论和自组织映射的轴承性能退化评估方法[J]. 计算机集成制造系统, 2018, 18(10): 269-278.
Liu Mei-fang, Yu Jian-bo, Yin Ji-ting. Bearing performance degradation assessment method based on bayesian inference and self-organizing map[J]. Computer Integrated Manufacturing System, 2018, 18(10): 269-278.
39 Guo L, Li N P, Jia F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109.
40 Khoualdia T, Hadjadj A E, Bouacha K, et al. Multi-objective optimization of ANN fault diagnosis model for rotating machinery using grey rational analysis in taguchi method[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 3009-3020.
41 Jiang H M, Chen J, Dong G M, et al. Study on hankel matrix-based SVD and its application in rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 52/53: 338-359.
42 Lee G Y, Kim M, Quan Y J, et al. Machine health management in smart factory: a review[J]. Journal of Mechanical Science and Technology, 2018, 32(3): 987-1009.
43 Luo S R, Cheng J S, Ao H. Application of LCD-SVD technique and CRO-SVM method to fault diagnosis for roller bearing[J]. Shock and Vibration, 2015, 2015: 847802.
44 Yuan N Q, Yang W L, Kang B, et al. Signal fusion-based deep fast random forest method for machine health assessment[J]. Journal of Manufacturing Systems, 2018, 48: 1-8.
45 李洪雪, 李世武, 孙文财, 等. 重型危险品半挂列车行驶工况的构建[J]. 吉林大学学报: 工学版, 2021, 51(5): 1700-1707.
Li Hong-xue, Li Shi-wu, Sun Wen-cai, et al. Construction of driving conditions of heavy-duty dangerous goods semitrailer trains[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1700-1707.
46 Benkedjouh T, Medjaher K, Zerhouni N, et al. Health assessment and life prediction of cutting tools based on support vector regression[J]. Journal of Intelligent Manufacturing, 2015, 26(2): 213-223.
47 徐宇亮, 孙际哲, 陈西宏, 等. 电子设备健康状态评估与故障预测方法[J]. 系统工程与电子技术, 2015, 34(5): 1068-1072.
Xu Yu-liang, Sun Ji-zhe, Chen Xi-hong, et al. Methods of electronic equipment health status assessment and failure prediction[J]. Systems Engineering and Electronic Technology, 2015, 34(5): 1068-1072.
48 Ma M, Chen X F, Zhang X L, et al. Locally linear embedding on grassmann manifold for performance degradation assessment of bearings[J]. IEEE Transactions on Reliability, 2017, 66(2): 467-477.
49 Li F, Chyu M K K, Wang J X, et al. Life grade recognition of rotating machinery based on Supervised orthogonal linear local tangent space alignment and optimal supervised fuzzy c-means clustering[J]. Measurement, 2015, 73: 384-400.
50 Liao L X, Jin W J, Pavel R. Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7076-7083.
51 Medjaher K, Tobon-Mejia D A, Zerhouni N. Remaining useful life estimation of critical components with application to bearings[J]. IEEE Transactions on Reliability, 2019, 61(2): 292-302.
52 Wang T. Bearing life prediction based on vibration signals: a case study and lessons learned[C]∥IEEE Conference on Prognostics and Health Management, Denver, 2012: 12997735.
53 Liu Z L, Zuo M J, Qin Y. Remaining useful life prediction of rolling element bearings based on health state assessment[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2016, 230(2): 314-330.
54 Soualhi A, Razik H, Clerc G, et al. Prognosis of bearing failures using hidden markov models and the adaptive neuro-fuzzy inference system[J]. IEEE Transactions on Industrial Electronics, 2016, 61(6): 2864-2874.
55 Rabiei M, Modarres M. A recursive Bayesian framework for structural health management using online monitoring and periodic inspections[J]. Reliability Engineering & System Safety, 2017, 112: 154-164.
56 宋传学, 肖峰, 刘思含, 等. 基于无迹卡尔曼滤波的轮毂电机驱动车辆状态观测[J]. 吉林大学学报: 工学版, 2016, 46(2): 333-339.
Song Chuan-xue, Xiao Feng, Liu Si-han, et al. State observation of in-wheel motor-driven vehicles based on unscented Kalman filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 333-339.
57 Lu F, Ju H F, Huang J Q. An improved extended kalman filter with inequality constraints for gas turbine engine health monitoring[J]. Aerospace Science and Technology, 2016, 58: 36-47.
58 Jouin M, Gouriveau R, Hissel D, et al. Particle filter-based prognostics: review, discussion and perspectives[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 2-31.
59 Niu Q M, Liu F, Tong Q B, et al. Health condition assessment of ball bearings using TOSELM[J]. Journal of Vibroengineering, 2018, 20(1): 272-282.
60 Guo L, Lei Y G, Li N P, et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing, 2018, 292: 142-150.
61 Liu T I, Jolley B. Tool condition monitoring(TCM) using neural networks[J]. International Journal of Advanced Manufacturing Technology, 2015, 78: 1999-2007.
62 Ning C, Chen M Y, Zhou D H. Hidden markov model-based statistics pattern analysis for multimode process monitoring: an index-switching scheme[J]. Industrial & Engineering Chemistry Research, 2019, 53(27): 11084-11095.
63 张继军, 马登武, 张金春. 基于HMM的电子设备状态监测与健康评估[J]. 系统工程与电子技术, 2013, 35(8): 1692-1696.
Zhang Ji-jun, Ma Deng-wu, Zhang Jin-chun. Condition monitoring and health assessment of electronic equipment based on HMM[J]. Systems Engineering and Electronic Technology, 2013, 35(8): 1692-1696.
64 许丽佳, 王厚军, 黄建国. CHMM在发射机状态监测与健康评估中的应用研究[J]. 电子科技大学学报, 2016, 39(6): 875-879, 890.
Xu Li-jia, Wang Hou-jun, Huang Jian-guo. Application research of CHMM in transmitter condition monitoring and health assessment[J]. Journal of University of Electronic Science and Technology of China, 2016, 39(6): 875-879, 890.
65 曾强, 黄政, 魏曙寰. 基于模糊理论和贝叶斯网络的燃气轮机健康状态评估方法[J]. 科学技术与工程, 2020, 20(11): 4363-4369.
Zeng Qiang, Huang Zheng, Wei Shu-huan. Gas turbine health evaluation method based on fuzzy theory and Bayesian network[J]. Science Technology and Engineering, 2020, 20(11): 4363-4369.
66 曾强, 黄政, 魏曙寰. 融合专家先验知识和单调性约束的贝叶斯网络参数学习方法[J]. 系统工程与电子技术, 2020, 42(3): 646-652.
Zeng Qiang, Huang Zheng, Wei Shu-huan. Bayesian network parameter learning method combining expert prior knowledge and monotonic constraints[J]. Systems Engineering and Electronics, 2020, 42(3): 646-652.
67 赵文清, 王强, 牛东晓. 基于贝叶斯网络的电抗器健康诊断[J]. 电力自动化设备, 2013, 33(1): 40-43.
Zhao Wen-qing, Wang Qiang, Niu Dong-xiao. Reactor health diagnosis based on Bayesian network[J]. Electric Power Automation Equipment, 2013, 33(1): 40-43.
68 Iamsumang C, Mosleh A, Modarres M. Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications[J]. Reliability Engineering & System Safety, 2018, 178: 118-129.
69 Wang X H, Guo H Z, Wang J B, et al. Predicting the health status of an unmanned aerial vehicles data-link system based on a bayesian network[J]. Sensors, 2018, 18(11): 3916.
70 么洪飞, 王宏健, 王莹, 等. 基于遗传算法DDBN参数学习的UUV威胁评估[J]. 哈尔滨工程大学学报, 2018, 39(12): 1972-1978.
Mo Hong-fei, Wang Hong-jian, Wang Ying, et al. UUV threat assessment based on genetic algorithm DDBN parameter learning[J]. Journal of Harbin Engineering University, 2018, 39(12): 1972-1978.
71 康守强, 王玉静, 崔历历, 等. 基于CFOA-MKHSVM的滚动轴承健康状态评估方法[J]. 仪器仪表学报, 2016, 37(9): 2029-2035.
Kang Shou-qiang, Wang Yu-jing, Cui Li-li, et al. Evaluation method of rolling bearing health status based on CFOA-MKHSVM[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 2029-2035.
72 Wang G F, Xie Q L, Zhang Y C. Tool condition monitoring system based on support vector machine and differential evolution optimization[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2017, 231(5): 805-813.
73 Kong D D, Chen Y J, Li N, et al. Tool wear monitoring based on kernel principal component analysis and v-support vector regression[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 175-190.
74 Sun C, Zhang Z S, Luo X, et al. Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing[J]. Journal of Sound and Vibration, 2016, 368: 249-263.
75 武立群, 张亮亮. 基于数据挖掘技术的桥梁结构健康状态检测[J]. 吉林大学学报: 工学版, 2020, 50(2): 565-571.
Wu Li-qun, Zhang Liang-liang. Bridge structure health detection based on data mining technology[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 565-571.
76 院老虎, 连冬杉, 张亮, 等. 基于密集连接卷积网络和支持向量机的飞行器机械部件故障诊断[J]. 吉林大学学报: 工学版, 2021, 51(5): 1635-1641.
Yuan Lao-hu, Lian Dong-shan, Zhang Liang, et al. Fault diagnosis of aircraft mechanical components based on densely connected convolutional networks and support vector machines[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
77 Xu G W, Liu M, Jiang Z F, et al. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning[J]. Sensors, 2019, 19(5): 19051088.
78 赵东, 臧雪柏, 赵宏伟. 基于果蝇优化的随机森林预测方法[J]. 吉林大学学报: 工学版, 2017, 47(2): 609-614.
Zhao Dong, Zang Xue-bai, Zhao Hong-wei. Random forest prediction method based on fruit fly optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 609-614.
79 肖运启, 王昆朋, 贺贯举, 等. 基于趋势预测的大型风电机组运行状态模糊综合评价[J]. 中国电机工程学报, 2018, 34(13): 2132-2139.
Xiao Yun-qi, Wang Kun-peng, He Guan-ju, et al. Fuzzy comprehensive evaluation of large-scale wind turbine operation status based on trend prediction[J]. Proceedings of the CSEE, 2018, 34(13): 2132-2139.
80 Li H, Hu Y G, Yang C, et al. An improved fuzzy synthetic condition assessment of a wind turbine generator system[J]. International Journal of Electrical Power & Energy Systems, 2016, 45(1): 468-476.
81 李鑫, 刘莹莹, 李赣华, 等. 基于模糊变权原理的卫星健康评估方法[J]. 系统工程与电子技术, 2017, 36(3): 476-480.
Li Xin, Liu Ying-ying, Li Gan-hua, et al. Satellite health assessment method based on fuzzy variable weight principle[J]. Systems Engineering and Electronic Technology, 2017, 36(3): 476-480.
82 国连玉, 李可军, 梁永亮, 等. 基于灰色模糊综合评判的高压断路器状态评估[J]. 电力自动化设备, 2014, 34(11): 161-167.
Guo Lian-yu, Li Ke-jun, Liang Yong-liang, et al. Condition assessment of high-voltage circuit breakers based on grey fuzzy comprehensive evaluation[J]. Electric Power Automation Equipment, 2014, 34(11): 161-167.
83 邱文昊, 黄考利, 连光耀, 等. 基于不确定性与重要度的改进DSmT健康状态评估[J]. 航空动力学报, 2017, 32(1): 96-104.
Qiu Wen-hao, Huang Kao-li, Lian Guang-yao, et al. Improved DSmT health status assessment based on uncertainty and importance[J]. Journal of Aeronautical Dynamics, 2017, 32(1): 96-104.
84 王亮, 吕卫民, 滕克难, 等. 基于Petri网的复杂设备健康状态退化分析[J]. 系统工程与电子技术, 2017, 36(10): 1973-1981.
Wang Liang, Lv Wei-min, Teng Ke-nan, et al. Analysis of health state degradation of complex equipment based on petri nets[J]. Systems Engineering and Electronic Technology, 2017, 36(10): 1973-1981.
85 Khan S, Yairi T. A review on the application of deep learning in system health management[J]. Mechanical Systems & Signal Processing, 2018, 107(1): 241-265.
86 Lee J, Wu F, Zhao W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical Systems & Signal Processing, 2016, 42(1/2): 314-334.
[1] 许鸿奎,姜彤彤,李鑫,姜斌祥,王永雷. 结合降噪自编码与极限学习机的LTE上行干扰分析[J]. 吉林大学学报(工学版), 2022, 52(1): 195-203.
[2] 刘桂霞,裴志尧,宋佳智. 基于深度学习的蛋白质⁃ATP结合位点预测[J]. 吉林大学学报(工学版), 2022, 52(1): 187-194.
[3] 刘远红,郭攀攀,张彦生,李鑫. 基于黎曼流形的稀疏图保持投影的特征提取[J]. 吉林大学学报(工学版), 2021, 51(6): 2268-2279.
[4] 钟辉,康恒,吕颖达,李振建,李红,欧阳若川. 基于注意力卷积神经网络的图像篡改定位算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1838-1844.
[5] 胡兴军,张靖龙,辛俐,罗雨霏,王靖宇,余天明. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1557-1564.
[6] 朱小龙,谢忠. 基于海量文本数据的知识图谱自动构建算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1358-1363.
[7] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[8] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
[9] 翟富刚,尹燕斌,李超,田纬,乔子石. 伺服电动缸传动系统刚度建模与前馈控制[J]. 吉林大学学报(工学版), 2021, 51(2): 442-449.
[10] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[11] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[12] 徐涛,马克,刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报(工学版), 2021, 51(1): 27-38.
[13] 陈学深,陈涛,武涛,马旭,曾令超,陈林涛. 覆草冬种马铃薯收获机稻草分离机构设计与试验[J]. 吉林大学学报(工学版), 2020, 50(2): 749-757.
[14] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[15] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!