吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (2): 267-279.doi: 10.13229/j.cnki.jdxbgxb20211080
• 综述 • 上一篇
李国发1,2(),王彦博1,2,何佳龙1,2(),王继利1,2
Guo-fa LI1,2(),Yan-bo WANG1,2,Jia-long HE1,2(),Ji-li WANG1,2
摘要:
机电装备的维修、保养直接影响其综合利用效率和使用寿命,健康状态评估是制定装备维护策略、管理维修资源的重要依据,是实现装备预测性维护、故障预测和健康管理的前提。传统的机电装备健康状态评估方法存在过分依赖专家经验、无法处理大规模数据、准确度低等缺点,难以满足现代机电装备健康管理技术的需求。本文在梳理、分析国内外机电装备健康状态评估最新研究成果的基础上,从信号获取、特征提取、健康状态等级划分和健康状态评估四个关键环节,综述了机电装备健康状态评估方法的研究进展和发展动态,指出了机电装备健康状态评估相关技术面临的挑战及解决途径。
中图分类号:
1 | 曾声奎, Pecht M G, 吴际. 故障预测与健康管理(PHM)技术的现状与发展[J]. 航空学报, 2005, 26(5): 610-632. |
Zeng Sheng-kui, Pecht M G, Wu Ji. Status and development of failure prediction and health management (PHM) technology[J]. Acta Aeronautica Sinica, 2005, 26(5): 610-632. | |
2 | 国家制造强国建设战略咨询委员会. 中国制造2025蓝皮书(2017)[M]. 北京: 电子工业出版社, 2017. |
3 | 徐庆宏, 任和, 马小骏. 民用飞机实时监控与健康管理技术[M]. 上海: 上海交通大学出版社, 2018. |
4 | 刘宗长. 从人工智能到工业智能[J]. 软件和集成电路, 2018(6): 34-39. |
Liu Zong-chang. From artificial intelligence to industrial intelligence[J]. Software and Integrated Circuits, 2018(6): 34-39. | |
5 | 李杰.云上工业智能[M].北京:中信出版集团,2017. |
6 | 董兴辉, 张鑫淼, 郑凯, 等. 基于组合赋权和云模型的风电机组健康状态评估[J]. 太阳能学报, 2018, 2(4): 68-75. |
Dong Xing-hui, Zhang Xin-miao, Zheng Kai, et al. Wind turbine health status assessment based on combined weighting and cloud model[J]. Acta Energia Sinica, 2018, 2(4): 68-75. | |
7 | Zheng K, Han L N, Guo S L, et al. Fuzzy synthetic condition assessment of wind turbine based on combination weighting and cloud model[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(6): 4563-4572. |
8 | Liu T I, Song S D, Liu G, et al. Online monitoring and measurements of tool wear for precision turning of stainless steel parts[J]. International Journal of Advanced Manufacturing Technology, 2017, 65(9-12): 1397-1407. |
9 | 胡姚刚, 李辉, 刘海涛, 等. 基于多类证据体方法的风电机组健康状态评估[J]. 太阳能学报, 2018, 39(2): 256-265. |
Hu Yao-gang, Li Hui, Liu Hai-tao, et al. Wind turbine health status assessment based on multi-class evidence body method[J]. Acta Energia Sinica, 2018, 39(2): 256-265. | |
10 |
Sun Z X, Sun H X. Health status assessment for wind turbine with recurrent neural networks[J]. Mathematical Problems in Engineering. DOI: 10.1155/2018/6972481.
doi: 10.1155/2018/6972481 |
11 | 董玉亮, 顾煜炯. 基于保局投影与自组织映射的风电机组故障预警方法[J]. 太阳能学报, 2015, 36(5): 1123-1129. |
Dong Yu-liang, Gu Yu-jiong. Wind turbine fault warning method based on security bureau projection and self-organizing mapping[J]. Acta Energia Sinica, 2015, 36(5): 1123-1129. | |
12 | 钟诗胜, 雷达. 一种可用于航空发动机健康状态预测的动态集成极端学习机模型[J]. 航空动力学报, 2016, 29(9): 2085-2090. |
Zhong Shi-sheng, Lei Da. A dynamic integrated extreme learning machine model that can be used to predict the health status of aero engines[J]. Journal of Aeronautical Dynamics, 2016, 29(9): 2085-2090. | |
13 | Tamilselvan P, Wang P F. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2020, 115: 124-135. |
14 | Ma M, Sun C, Chen X F. Discriminative deep belief networks with ant colony optimization for health status assessment of machine[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(12): 3115-3125. |
15 | Hanachi H, Liu J, Banerjee A, et al. A physics-based modeling approach for performance monitoring in gas turbine engines[J]. IEEE Transactions on Reliability, 2015, 64(1): 197-205. |
16 | 陈煜, 鞠红飞, 鲁峰, 等. 涡喷发动机健康状态的带约束非线性滤波估计[J]. 推进技术, 2016, 37(4): 741-748. |
Chen Yu, Ju Hong-fei, Lu Feng, et al. Constrained nonlinear filtering estimation of turbojet engine health state[J]. Propulsion Technology, 2016, 37(4): 741-748. | |
17 | Yin X J, Wang Z L, Zhang B C, et al. Health estimation of fan based on belief-rule-base expert system in turbofan engine gas-path[J]. Advances in Mechanical Engineering, 2017, 9(3): 1-11. |
18 | Di Maio F, Hu J, Tse P, et al. Ensemble-approaches for clustering health status of oil sand pumps[J]. Expert Systems with Applications, 2020, 39(5): 4847-4859. |
19 | 王浩任, 黄亦翔, 赵帅, 等. 基于小波包和拉普拉斯特征值映射的柱塞泵健康评估方法[J]. 振动与冲击, 2017, 36(22): 45-50. |
Wang Hao-ren, Huang Yi-xiang, Zhao Shuai, et al. Health assessment method of plunger pump based on wavelet packet and laplace eigenvalue mapping[J]. Journal of Vibration and Shock, 2017, 36(22): 45-50. | |
20 | Diez-Olivan A, Pagan J A, Khoa N L D, et al. Kernel-based support vector machines for automated health status assessment in monitoring sensor data[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(1-4): 327-340. |
21 | Arshad M, Islam S M, Khaliq A. Fuzzy logic approach in power transformers management and decision making[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 21(5): 2343-2354. |
22 | 王亮, 吕卫民, 金永川. 一种多类型证据的合成评估方法[J]. 控制与决策, 2017, 12(11): 1973-1978. |
Wang Liang, Lv Wei-min, Jin Yong-chuan. A composite evaluation method for multiple types of evidence[J]. Control and Decision, 2017, 12(11): 1973-1978. | |
23 | Cheng J, Yu M. OTHR health status assessment using grey clustering method[C]∥3rd International Conference on Mechanical, Control and Computer Engineering, Huhhot, 2018: 494-497. |
24 | 崔建国, 林泽力, 吕瑞, 等. 基于模糊灰色聚类和组合赋权法的飞机健康状态综合评估方法[J]. 航空学报, 2014, 35(3): 764-772. |
Cui Jian-guo, Lin Ze-li, Lv Rui, et al. Comprehensive assessment method of aircraft health status based on fuzzy grey clustering and combined weighting method[J]. Acta Aeronautica Sinica, 2014, 35(3): 764-772. | |
25 | Wen J, Gao H L. Degradation assessment for the ball screw with variational autoencoder and kernel density estimation[J]. Advances in Mechanical Engineering, 2018, 10(9): 1-12. |
26 | 邓超, 孙耀宗, 李嵘, 等. 基于隐Markov模型的重型数控机床健康状态评估[J]. 计算机集成制造系统, 2013, 19(3): 552-558. |
Deng Chao, Sun Yao-zong, Li Rong, et al. Health status assessment of heavy CNC machine tools based on hidden markov model[J]. Computer Integrated Manufacturing System, 2013, 19(3): 552-558. | |
27 | 谷梦瑶, 陈友玲, 王新龙. 多退化变量下基于实时健康度的相似性寿命预测方法[J]. 计算机集成制造系统, 2017, 23(2): 362-372. |
Gu Meng-yao, Chen You-ling, Wang Xin-long. Similarity life prediction method based on real-time health under multiple degradation variables[J]. Computer Integrated Manufacturing System, 2017, 23(2): 362-372. | |
28 | Yang J Y, Zhang Y Y, Zhu Y S. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J]. Mechanical Systems and Signal Processing, 2017, 21(5): 2012-2024. |
29 | Jiang H M, Chen J, Dong G M. Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment[J]. Mechanical Systems and Signal Processing, 2016, 72: 184-205. |
30 | Yin X J, Zhang B C, Zhou Z J, et al. A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base[J]. Microelectronics Reliability, 2018, 84: 187-196. |
31 | 李巍华, 李静, 张绍辉. 连续隐半马尔科夫模型在轴承性能退化评估中的应用[J]. 振动工程学报, 2016, 27(4): 613-620. |
Li Wei-hua, Li Jing, Zhang Shao-hui. Application of continuous hidden semi-Markov model in bearing performance degradation assessment[J]. Journal of Vibration Engineering, 2016, 27(4): 613-620. | |
32 | Liao Z R, Gao D, Lu Y, et al. Multi-scale hybrid HMM for tool wear condition monitoring[J]. International Journal of Advanced Manufacturing Technology, 2016, 84: 2437-2448. |
33 | Lu C, Li T Y, Liu H M. Online milling tool condition monitoring with a single continuous hidden Markov models approach[J]. Journal of Vibroengineering, 2017, 16(5): 2448-2457. |
34 | Yu J S, Liang S, Tang D Y, et al. A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction[J]. International Journal of Advanced Manufacturing Technology, 2017, 91: 201-211. |
35 | Kong D D, Chen Y J, Li N. Gaussian process regression for tool wear prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 556-574. |
36 | Kong D D, Chen Y J, Li N. Hidden semi-markov model-based method for tool wear estimation in milling process[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 3647-3657. |
37 | Kong D D, Chen Y J, Li N. Force-based tool wear estimation for milling process using gaussian mixture hidden markov models[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 2853-2865. |
38 | 刘美芳, 余建波, 尹纪庭. 基于贝叶斯推论和自组织映射的轴承性能退化评估方法[J]. 计算机集成制造系统, 2018, 18(10): 269-278. |
Liu Mei-fang, Yu Jian-bo, Yin Ji-ting. Bearing performance degradation assessment method based on bayesian inference and self-organizing map[J]. Computer Integrated Manufacturing System, 2018, 18(10): 269-278. | |
39 | Guo L, Li N P, Jia F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109. |
40 | Khoualdia T, Hadjadj A E, Bouacha K, et al. Multi-objective optimization of ANN fault diagnosis model for rotating machinery using grey rational analysis in taguchi method[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 3009-3020. |
41 | Jiang H M, Chen J, Dong G M, et al. Study on hankel matrix-based SVD and its application in rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 52/53: 338-359. |
42 | Lee G Y, Kim M, Quan Y J, et al. Machine health management in smart factory: a review[J]. Journal of Mechanical Science and Technology, 2018, 32(3): 987-1009. |
43 | Luo S R, Cheng J S, Ao H. Application of LCD-SVD technique and CRO-SVM method to fault diagnosis for roller bearing[J]. Shock and Vibration, 2015, 2015: 847802. |
44 | Yuan N Q, Yang W L, Kang B, et al. Signal fusion-based deep fast random forest method for machine health assessment[J]. Journal of Manufacturing Systems, 2018, 48: 1-8. |
45 | 李洪雪, 李世武, 孙文财, 等. 重型危险品半挂列车行驶工况的构建[J]. 吉林大学学报: 工学版, 2021, 51(5): 1700-1707. |
Li Hong-xue, Li Shi-wu, Sun Wen-cai, et al. Construction of driving conditions of heavy-duty dangerous goods semitrailer trains[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1700-1707. | |
46 | Benkedjouh T, Medjaher K, Zerhouni N, et al. Health assessment and life prediction of cutting tools based on support vector regression[J]. Journal of Intelligent Manufacturing, 2015, 26(2): 213-223. |
47 | 徐宇亮, 孙际哲, 陈西宏, 等. 电子设备健康状态评估与故障预测方法[J]. 系统工程与电子技术, 2015, 34(5): 1068-1072. |
Xu Yu-liang, Sun Ji-zhe, Chen Xi-hong, et al. Methods of electronic equipment health status assessment and failure prediction[J]. Systems Engineering and Electronic Technology, 2015, 34(5): 1068-1072. | |
48 | Ma M, Chen X F, Zhang X L, et al. Locally linear embedding on grassmann manifold for performance degradation assessment of bearings[J]. IEEE Transactions on Reliability, 2017, 66(2): 467-477. |
49 | Li F, Chyu M K K, Wang J X, et al. Life grade recognition of rotating machinery based on Supervised orthogonal linear local tangent space alignment and optimal supervised fuzzy c-means clustering[J]. Measurement, 2015, 73: 384-400. |
50 | Liao L X, Jin W J, Pavel R. Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7076-7083. |
51 | Medjaher K, Tobon-Mejia D A, Zerhouni N. Remaining useful life estimation of critical components with application to bearings[J]. IEEE Transactions on Reliability, 2019, 61(2): 292-302. |
52 | Wang T. Bearing life prediction based on vibration signals: a case study and lessons learned[C]∥IEEE Conference on Prognostics and Health Management, Denver, 2012: 12997735. |
53 | Liu Z L, Zuo M J, Qin Y. Remaining useful life prediction of rolling element bearings based on health state assessment[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2016, 230(2): 314-330. |
54 | Soualhi A, Razik H, Clerc G, et al. Prognosis of bearing failures using hidden markov models and the adaptive neuro-fuzzy inference system[J]. IEEE Transactions on Industrial Electronics, 2016, 61(6): 2864-2874. |
55 | Rabiei M, Modarres M. A recursive Bayesian framework for structural health management using online monitoring and periodic inspections[J]. Reliability Engineering & System Safety, 2017, 112: 154-164. |
56 | 宋传学, 肖峰, 刘思含, 等. 基于无迹卡尔曼滤波的轮毂电机驱动车辆状态观测[J]. 吉林大学学报: 工学版, 2016, 46(2): 333-339. |
Song Chuan-xue, Xiao Feng, Liu Si-han, et al. State observation of in-wheel motor-driven vehicles based on unscented Kalman filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 333-339. | |
57 | Lu F, Ju H F, Huang J Q. An improved extended kalman filter with inequality constraints for gas turbine engine health monitoring[J]. Aerospace Science and Technology, 2016, 58: 36-47. |
58 | Jouin M, Gouriveau R, Hissel D, et al. Particle filter-based prognostics: review, discussion and perspectives[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 2-31. |
59 | Niu Q M, Liu F, Tong Q B, et al. Health condition assessment of ball bearings using TOSELM[J]. Journal of Vibroengineering, 2018, 20(1): 272-282. |
60 | Guo L, Lei Y G, Li N P, et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing, 2018, 292: 142-150. |
61 | Liu T I, Jolley B. Tool condition monitoring(TCM) using neural networks[J]. International Journal of Advanced Manufacturing Technology, 2015, 78: 1999-2007. |
62 | Ning C, Chen M Y, Zhou D H. Hidden markov model-based statistics pattern analysis for multimode process monitoring: an index-switching scheme[J]. Industrial & Engineering Chemistry Research, 2019, 53(27): 11084-11095. |
63 | 张继军, 马登武, 张金春. 基于HMM的电子设备状态监测与健康评估[J]. 系统工程与电子技术, 2013, 35(8): 1692-1696. |
Zhang Ji-jun, Ma Deng-wu, Zhang Jin-chun. Condition monitoring and health assessment of electronic equipment based on HMM[J]. Systems Engineering and Electronic Technology, 2013, 35(8): 1692-1696. | |
64 | 许丽佳, 王厚军, 黄建国. CHMM在发射机状态监测与健康评估中的应用研究[J]. 电子科技大学学报, 2016, 39(6): 875-879, 890. |
Xu Li-jia, Wang Hou-jun, Huang Jian-guo. Application research of CHMM in transmitter condition monitoring and health assessment[J]. Journal of University of Electronic Science and Technology of China, 2016, 39(6): 875-879, 890. | |
65 | 曾强, 黄政, 魏曙寰. 基于模糊理论和贝叶斯网络的燃气轮机健康状态评估方法[J]. 科学技术与工程, 2020, 20(11): 4363-4369. |
Zeng Qiang, Huang Zheng, Wei Shu-huan. Gas turbine health evaluation method based on fuzzy theory and Bayesian network[J]. Science Technology and Engineering, 2020, 20(11): 4363-4369. | |
66 | 曾强, 黄政, 魏曙寰. 融合专家先验知识和单调性约束的贝叶斯网络参数学习方法[J]. 系统工程与电子技术, 2020, 42(3): 646-652. |
Zeng Qiang, Huang Zheng, Wei Shu-huan. Bayesian network parameter learning method combining expert prior knowledge and monotonic constraints[J]. Systems Engineering and Electronics, 2020, 42(3): 646-652. | |
67 | 赵文清, 王强, 牛东晓. 基于贝叶斯网络的电抗器健康诊断[J]. 电力自动化设备, 2013, 33(1): 40-43. |
Zhao Wen-qing, Wang Qiang, Niu Dong-xiao. Reactor health diagnosis based on Bayesian network[J]. Electric Power Automation Equipment, 2013, 33(1): 40-43. | |
68 | Iamsumang C, Mosleh A, Modarres M. Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications[J]. Reliability Engineering & System Safety, 2018, 178: 118-129. |
69 | Wang X H, Guo H Z, Wang J B, et al. Predicting the health status of an unmanned aerial vehicles data-link system based on a bayesian network[J]. Sensors, 2018, 18(11): 3916. |
70 | 么洪飞, 王宏健, 王莹, 等. 基于遗传算法DDBN参数学习的UUV威胁评估[J]. 哈尔滨工程大学学报, 2018, 39(12): 1972-1978. |
Mo Hong-fei, Wang Hong-jian, Wang Ying, et al. UUV threat assessment based on genetic algorithm DDBN parameter learning[J]. Journal of Harbin Engineering University, 2018, 39(12): 1972-1978. | |
71 | 康守强, 王玉静, 崔历历, 等. 基于CFOA-MKHSVM的滚动轴承健康状态评估方法[J]. 仪器仪表学报, 2016, 37(9): 2029-2035. |
Kang Shou-qiang, Wang Yu-jing, Cui Li-li, et al. Evaluation method of rolling bearing health status based on CFOA-MKHSVM[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 2029-2035. | |
72 | Wang G F, Xie Q L, Zhang Y C. Tool condition monitoring system based on support vector machine and differential evolution optimization[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2017, 231(5): 805-813. |
73 | Kong D D, Chen Y J, Li N, et al. Tool wear monitoring based on kernel principal component analysis and v-support vector regression[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 175-190. |
74 | Sun C, Zhang Z S, Luo X, et al. Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing[J]. Journal of Sound and Vibration, 2016, 368: 249-263. |
75 | 武立群, 张亮亮. 基于数据挖掘技术的桥梁结构健康状态检测[J]. 吉林大学学报: 工学版, 2020, 50(2): 565-571. |
Wu Li-qun, Zhang Liang-liang. Bridge structure health detection based on data mining technology[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 565-571. | |
76 | 院老虎, 连冬杉, 张亮, 等. 基于密集连接卷积网络和支持向量机的飞行器机械部件故障诊断[J]. 吉林大学学报: 工学版, 2021, 51(5): 1635-1641. |
Yuan Lao-hu, Lian Dong-shan, Zhang Liang, et al. Fault diagnosis of aircraft mechanical components based on densely connected convolutional networks and support vector machines[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641. | |
77 | Xu G W, Liu M, Jiang Z F, et al. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning[J]. Sensors, 2019, 19(5): 19051088. |
78 | 赵东, 臧雪柏, 赵宏伟. 基于果蝇优化的随机森林预测方法[J]. 吉林大学学报: 工学版, 2017, 47(2): 609-614. |
Zhao Dong, Zang Xue-bai, Zhao Hong-wei. Random forest prediction method based on fruit fly optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 609-614. | |
79 | 肖运启, 王昆朋, 贺贯举, 等. 基于趋势预测的大型风电机组运行状态模糊综合评价[J]. 中国电机工程学报, 2018, 34(13): 2132-2139. |
Xiao Yun-qi, Wang Kun-peng, He Guan-ju, et al. Fuzzy comprehensive evaluation of large-scale wind turbine operation status based on trend prediction[J]. Proceedings of the CSEE, 2018, 34(13): 2132-2139. | |
80 | Li H, Hu Y G, Yang C, et al. An improved fuzzy synthetic condition assessment of a wind turbine generator system[J]. International Journal of Electrical Power & Energy Systems, 2016, 45(1): 468-476. |
81 | 李鑫, 刘莹莹, 李赣华, 等. 基于模糊变权原理的卫星健康评估方法[J]. 系统工程与电子技术, 2017, 36(3): 476-480. |
Li Xin, Liu Ying-ying, Li Gan-hua, et al. Satellite health assessment method based on fuzzy variable weight principle[J]. Systems Engineering and Electronic Technology, 2017, 36(3): 476-480. | |
82 | 国连玉, 李可军, 梁永亮, 等. 基于灰色模糊综合评判的高压断路器状态评估[J]. 电力自动化设备, 2014, 34(11): 161-167. |
Guo Lian-yu, Li Ke-jun, Liang Yong-liang, et al. Condition assessment of high-voltage circuit breakers based on grey fuzzy comprehensive evaluation[J]. Electric Power Automation Equipment, 2014, 34(11): 161-167. | |
83 | 邱文昊, 黄考利, 连光耀, 等. 基于不确定性与重要度的改进DSmT健康状态评估[J]. 航空动力学报, 2017, 32(1): 96-104. |
Qiu Wen-hao, Huang Kao-li, Lian Guang-yao, et al. Improved DSmT health status assessment based on uncertainty and importance[J]. Journal of Aeronautical Dynamics, 2017, 32(1): 96-104. | |
84 | 王亮, 吕卫民, 滕克难, 等. 基于Petri网的复杂设备健康状态退化分析[J]. 系统工程与电子技术, 2017, 36(10): 1973-1981. |
Wang Liang, Lv Wei-min, Teng Ke-nan, et al. Analysis of health state degradation of complex equipment based on petri nets[J]. Systems Engineering and Electronic Technology, 2017, 36(10): 1973-1981. | |
85 | Khan S, Yairi T. A review on the application of deep learning in system health management[J]. Mechanical Systems & Signal Processing, 2018, 107(1): 241-265. |
86 | Lee J, Wu F, Zhao W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical Systems & Signal Processing, 2016, 42(1/2): 314-334. |
[1] | 许鸿奎,姜彤彤,李鑫,姜斌祥,王永雷. 结合降噪自编码与极限学习机的LTE上行干扰分析[J]. 吉林大学学报(工学版), 2022, 52(1): 195-203. |
[2] | 刘桂霞,裴志尧,宋佳智. 基于深度学习的蛋白质⁃ATP结合位点预测[J]. 吉林大学学报(工学版), 2022, 52(1): 187-194. |
[3] | 刘远红,郭攀攀,张彦生,李鑫. 基于黎曼流形的稀疏图保持投影的特征提取[J]. 吉林大学学报(工学版), 2021, 51(6): 2268-2279. |
[4] | 钟辉,康恒,吕颖达,李振建,李红,欧阳若川. 基于注意力卷积神经网络的图像篡改定位算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1838-1844. |
[5] | 胡兴军,张靖龙,辛俐,罗雨霏,王靖宇,余天明. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1557-1564. |
[6] | 朱小龙,谢忠. 基于海量文本数据的知识图谱自动构建算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1358-1363. |
[7] | 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434. |
[8] | 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421. |
[9] | 翟富刚,尹燕斌,李超,田纬,乔子石. 伺服电动缸传动系统刚度建模与前馈控制[J]. 吉林大学学报(工学版), 2021, 51(2): 442-449. |
[10] | 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48. |
[11] | 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62. |
[12] | 徐涛,马克,刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报(工学版), 2021, 51(1): 27-38. |
[13] | 陈学深,陈涛,武涛,马旭,曾令超,陈林涛. 覆草冬种马铃薯收获机稻草分离机构设计与试验[J]. 吉林大学学报(工学版), 2020, 50(2): 749-757. |
[14] | 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416. |
[15] | 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935. |
|