吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2582-2591.doi: 10.13229/j.cnki.jdxbgxb20210390

• 交通运输工程·土木工程 • 上一篇    

城市公交-地铁加权复合网络构建及鲁棒性分析

潘恒彦1(),张文会2,胡宝雨2,刘尊严2,王永岗1(),张枭3   

  1. 1.长安大学 运输工程学院,西安 710064
    2.东北林业大学 交通学院,哈尔滨 150040
    3.上海市城市建设设计研究总院(集团)有限公司,上海 200125
  • 收稿日期:2021-04-30 出版日期:2022-11-01 发布日期:2022-11-16
  • 通讯作者: 王永岗 E-mail:HyPan7@chd.edu.cn;wangyg@chd.edu.cn
  • 作者简介:潘恒彦(1994-),男,博士研究生. 研究方向:交通安全,公共交通. E-mail:HyPan7@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(71901056);教育部人文社会科学研究青年基金项目(19YJCZH052)

Construction and robustness analysis of urban weighted subway⁃bus composite network

Heng-yan PAN1(),Wen-hui ZHANG2,Bao-yu HU2,Zun-yan LIU2,Yong-gang WANG1(),Xiao ZHANG3   

  1. 1.College of Transportation Engineering,Chang'an University,Xi'an 710064,China
    2.School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China
    3.Shanghai Urban Construction Design & Research Institute(Group) Co. ,Ltd. ,Shanghai 200125,China
  • Received:2021-04-30 Online:2022-11-01 Published:2022-11-16
  • Contact: Yong-gang WANG E-mail:HyPan7@chd.edu.cn;wangyg@chd.edu.cn

摘要:

基于复杂网络理论,本文将地铁、公交实际运营特性考虑其中,构建了加权复合网络,提出“出行成功率”与“绕行系数”两个鲁棒性评价新指标,以及更贴近于实际的2种新型攻击方式A与B。通过仿真实验,统计在蓄意攻击、随机攻击2类攻击策略的3种攻击模型下,加权复合网络评价指标(网络效率、最大连通子图率、绕行系数以及出行成功率)的变化情况,分析复合加权网络分别在蓄意攻击与随机攻击下,对上述3种攻击模型的鲁棒特性。结果表明:受到蓄意攻击时,绕行可达方面,复合网络对新型攻击方式A与B的鲁棒性能高于传统攻击方式;出行成功率方面,复合网络对新型攻击方式A的鲁棒性高于对传统攻击方式与新型方式B的鲁棒性。随机攻击下,绕行系数方面,复合网络对3种攻击模式呈现出的鲁棒性交替变化;出行成功率方面,对3者的鲁棒性为:新型攻击方式A>新型攻击方式B>传统攻击方式。

关键词: 交通运输系统工程, 复杂网络理论, 加权复合网络, 蓄意攻击, 随机攻击, 鲁棒性

Abstract:

Based on the complex network theory, considering the actual operation characteristics of subway and public transportation, a weighted composite network is constructed, and two new robustness evaluation indexes, "travel success rate" and " detour coefficient", are proposed, as well as two new attack methods, "A" and "B", which were more closer to the reality. Through simulation experiments, the changes in the evaluation indexes (network efficiency, maximum connectivity subgraph rate, detour coefficient, and travel success rate) of the composite weighted network under three attack models with two types of attack strategies, namely, deliberate attack and random attack, were analyzed, and the robustness characteristics of the composite weighted network against the above three attack models were also analyzed under deliberate attack and random attack, respectively. The results showed that under deliberate attacks, the robustness of the composite network against the new attack modes A and B were higher than that of the traditional attack mode in terms of detour accessibility, and the robustness of the composite network against the new attack mode A was higher than that against the traditional attack mode and the new mode B with respect to the travel success rate. The robustness of the composite network to the three attack modes under random attacks, in terms of bypassing coefficient, showed alternating robustness. And the robustness to the three was: new attack mode A>new attack mode B>traditional attack mode when it came to the travel success rate.

Key words: engineering of communications and transportation system, complex network theory, Weighted composite network, deliberate attack, random attack, robustness

中图分类号: 

  • U491

图1

公交-地铁无权复合拓扑网络构建"

图2

加权复合网络拓扑图"

图3

度与加权复合度分布"

图4

节点度特性统计"

图5

节点聚类系数特性统计"

图6

原始网络与受攻击后的网络"

图7

攻击方式"

图8

鲁棒性检验仿真试验流程"

图9

传统攻击模式下鲁棒性指标变化情况"

图10

新型攻击模式A下鲁棒性指标变化情况"

图11

新型攻击模式B下鲁棒性指标变化情况"

图12

蓄意攻击条件下鲁棒性指标变化情况"

图13

随机攻击条件下鲁棒性指标变化情况"

1 Pang J Z F, Bin O N, Ng K M, et al.Efficiency and robustness of different bus network designs[J]. International Journal of Modern Physics C, 2015, 26(3): 1550024.
2 Derrible S, Kennedy C. The complexity and robustness of metro network[J]. Physica A: Statistical Mechanics and its Application, 2010, 389(17): 3678-3691.
3 Yang Y H, Liu Y X, Zhou M X, et al. Robustness assessment of urban rail transit based on complex network theory: a case study of the beijing subway[J]. Safety Science, 2015, 79: 149-162.
4 Latora V, Marchiori M. Is the boston subway a small-world network[J]. Physical A: Statistical Mechanics and its Applications, 2002, 314(1-4): 109-113.
5 Angeloudis P, Fisk D. Large subway systems as complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2006, 367(4): 553-558.
6 陈峰, 胡映月, 李小红, 等. 城市轨道交通有权网络相继故障可靠性研究[J]. 交通运输系统工程与信息, 2016, 16(2): 139-145.
Chen Feng, Hu Ying-yue, Li Xiao-hong, et al. Cascading failures in weighted network of urban rail transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 139-145.
7 甘俊杰, 聂规划, 徐迪. 武汉市地铁网络复杂特性与鲁棒性研究[J]. 安全与环境工程, 2018, 25(6): 120-126.
Jun-jie Gang, Nie Gui-hua, Xu Di. Complex characteristics and robustness of wuhan metro network[J]. Safety and Environmental Engineering, 2018, 25(6): 120-126.
8 蔡鉴明, 邓薇. 长沙地铁网络复杂特性与级联失效鲁棒性分析[J]. 铁道科学与工程学报, 2019, 16(6): 1587-1596.
Cai Jian-ming, Deng Wei. Complex characteristics of Changsha metro network and robustness analysis of cascading failures[J]. Journal of Railway Science and Engineering, 2019, 16(6): 1587-1596.
9 杜斐, 黄宏伟, 张东明, 等. 上海轨道交通网络的复杂网络特性及鲁棒性研究[J]. 武汉大学学报: 工学版, 2016, 49(5): 701-707.
Du Fei, Huang Hong-wei, Zhang Dong-ming, et al. Analysis of characteristics of complex network and robustness in shanghai metro network[J]. Engineering Journal of Wuhan University, 2016, 49(5): 701-707.
10 强添纲, 赵明明, 裴玉龙. 城市多模式交通网络的复杂网络特性与鲁棒性研究[J]. 交通信息与安全, 2019, 37(1): 65-71.
Qiang Tian-gang, Zhao Ming-ming, Pei Yu-long. An analysis of characteristics of complex network and robustness in harbin multi-mode traffic network[J]. Journal of Transport Information and Safety, 2019, 37(1): 65-71.
11 罗艺, 钱大琳. 公交-地铁复合网络构建及网络特性分析[J]. 交通运输系统工程与信息, 2015, 15(5): 39-44.
Luo Yi, Qian Da-lin. Construction of subway and bus transport networks and analysis of the network topology characteristics[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 39-44.
12 鲍登, 高超, 张自力. 基于复杂网络的公交-地铁复合网络鲁棒性分析[J]. 西南师范大学学报: 自然科学版, 2017, 42(5): 22-27.
Bao Deng, Gao Chao, Zhang Zi-li. Analysis of robustness of bus and subway interdependent network based on the complex network theory[J]. Journal of Southwest China Normal University(Natural Science Edition), 2017, 42(5): 22-27.
13 Wang L J, Zheng S Y, Wang Y G, et al. Identification of critical nodes in multimodal transportation network[J]. Physica A: Statistical Mechanics and its Applications, 2021, 580: 126170.
14 薛锋, 何传磊, 黄倩, 等. 多式轨道交通网络的耦合协调度[J]. 吉林大学学报: 工学版, 2021, 51(6): 2040-2050.
Xue Feng, He Chuan-lei, Huang Qian, et al. Coordination degree of multimodal rail transit network[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2040-2050.
15 鞠艳妮, 李宗平, 陈宇帆, 等. 区域轨道交通系统节点重要度及故障恢复研究[J]. 中国安全科学学报, 2021, 31(2): 112-119.
Ju Yan-ni, Li Zong-ping, Chen Yu-fan, et al.Study on node importance and failure recovery of regional rail transit system[J]. China Safety Science Journal, 2021, 31(2): 112-119.
16 牟能冶, 康秋萍, 贾程方. 突发事件影响下的城市快递网络脆弱性评估[J]. 中国安全科学学报, 2020, 30(12): 125-132.
Mu Neng-ye, Kang Qiu-ping, Jia Cheng-fang. Vulnerability assessment of urban express networks under influence of emergencies[J]. China Safety Science Journal, 2020, 30(12): 125-132.
17 林鹏飞, 翁剑成, 付宇, 等. 基于刷卡数据的轨道交通加权网络结构特征[J]. 吉林大学学报: 工学版, 2020, 50(3): 956-962.
Lin Peng-fei, Weng Jian-cheng, Fu Yu, et al. Structure characteristics of rail transit weighted network based on smart card data[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3): 956-962.
18 .城市综合交通体系规划标准 [S].
[1] 方松,马健霄,李根,沈玲宏,徐楚博. 城市快速路右侧车道移动作业区行车风险分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1786-1791.
[2] 宋现敏,杨舒天,刘明鑫,李志慧. 站点间公交行程时间波动特性及预测方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1792-1799.
[3] 张玮,张树培,罗崇恩,张生,王国林. 智能汽车紧急工况避撞轨迹规划[J]. 吉林大学学报(工学版), 2022, 52(7): 1515-1523.
[4] 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374.
[5] 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323.
[6] 徐洪峰,陈虹瑾,张栋,陆千惠,安娜,耿现彩. 面向网联汽车环境的单点全感应式信号配时技术[J]. 吉林大学学报(工学版), 2022, 52(6): 1324-1336.
[7] 盖松雪,曾小清,岳晓园,袁子豪. 基于用户-系统双层优化算法的车位引导模型[J]. 吉林大学学报(工学版), 2022, 52(6): 1344-1352.
[8] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[9] 冯天军,孙学路,黄家盛,田秀娟,宋现敏. 基于三种过街方式的两相位信号交叉口延误[J]. 吉林大学学报(工学版), 2022, 52(3): 550-556.
[10] 李兴华,冯飞宇,成诚,王洧,唐鹏程. 网约拼车服务选择偏好分析及建模[J]. 吉林大学学报(工学版), 2022, 52(3): 578-584.
[11] 尹超英,邵春福,黄兆国,王晓全,王晟由. 基于梯度提升决策树的多尺度建成环境对小汽车拥有的影响[J]. 吉林大学学报(工学版), 2022, 52(3): 572-577.
[12] 贾洪飞,邵子函,杨丽丽. 终点不确定条件下网约车合乘匹配模型及算法[J]. 吉林大学学报(工学版), 2022, 52(3): 564-571.
[13] 汪怡然,陈景旭,王岳平,霍锦彪,刘志远. 考虑服务公平性的定制公交动态响应方案[J]. 吉林大学学报(工学版), 2022, 52(11): 2574-2581.
[14] 吴静娴,申华鹏,韩印,杨敏. 考虑城市建成环境非线性作用的通勤时间模型[J]. 吉林大学学报(工学版), 2022, 52(11): 2568-2573.
[15] 林赐云,谢天承,覃蔚,郭旭,李正浩,郑臻. 冰雪天气下交叉口信号配时优化方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2316-2324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!