吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1493-1500.doi: 10.13229/j.cnki.jdxbgxb.20220849

• 农业工程·仿生工程 • 上一篇    

基于改进综合因素法的农业机械可靠性分配

陈超(),戴孟初,周乐,梁云东   

  1. 中国农业大学 工学院,北京 100083
  • 收稿日期:2022-07-02 出版日期:2024-05-01 发布日期:2024-06-11
  • 作者简介:陈超(1988-),女,副教授,博士. 研究方向:复杂机电系统可靠性.E-mail:chenchao2018@cau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFD1500403);数控装备可靠性教育部重点实验室开放基金项目(JLU-cncr-202305);浙江省自然科学基金联合基金项目(LQZSZ24E050001)

Reliability allocation of agricultural machinery based on improved integrated factors method

Chao CHEN(),Meng-chu DAI,Le ZHOU,Yun-dong LIANG   

  1. College of Engineering,China Agricultural University,Beijing 100083,China
  • Received:2022-07-02 Online:2024-05-01 Published:2024-06-11

摘要:

现有可靠性分配方法在农机领域应用较少,为更好地满足农机可靠性分配需求,提出了一种基于改进综合因素法(IFM)的农业机械可靠性分配方法。该方法针对农机特点综合考虑了包含子系统危害度A1、改进潜力A2、复杂度A3、维修性A4、环境条件A5和技术水平A6在内的6种影响因素,并形成子系统故障率分配的权重因子,实现了将指定的系统整体可靠性目标分配至子系统层级。针对新研发产品,给出了各影响因素取值的评价参考标准,可通过故障模式影响及危害性分析(FMECA)结合专家评分定量计算。以2BMQF-6/12免耕播种机为例,应用改进IFM对其进行可靠性分配,并与IFM及FOO、Kim、Yadav方法进行比对,验证了本文所提出方法的可行性。本文方法分配结果合理、流程完善、考虑因素相对全面,可为农机可靠性分配提供参考,为农机产品可靠性设计提供依据。

关键词: 农业机械, 可靠性分配, 综合因素法, 设计阶段

Abstract:

Existing reliability allocation methods are less applied in the field of agricultural machinery, and in order to better meet the reliability allocation needs of agricultural machinery, this paper proposes a reliability allocation method for agricultural machinery based on improved integrated factors method(IFM). The method integrates six influencing factors including subsystem severity A1, improvement potential A2, complexity A3, maintainability A4, environmental conditions A5 and technology level A6 for the characteristics of agricultural machinery, and forms the weight factor of subsystem failure rate to realize the allocation of the specified overall system reliability target to the subsystem level. For newly developed products, the evaluation reference standard for the value of each influence factor is given, which can be quantitatively calculated by FMECA combined with expert scores. Taking 2BMQF-6/12 no-till planter as an example, the improved IFM is applied to allocate its reliability, and the feasibility of the proposed method is verified by comparing it with the IFM, FOO, Kim's and Yadav's methods. The allocation results of the proposed method are reasonable, the process is complete, and the factors considered are relatively comprehensive, which can provide a reference for the reliability allocation of agricultural machinery and a basis for the reliability design of agricultural machinery products.

Key words: agricultural machinery, reliability allocation, integrated factors method, design phase

中图分类号: 

  • S220

表1

严重度和发生度等级评定"

评定等级严重度发生度
影响定义程度定义
1,3,5,7,9上述等级间的折衷上述等级间的折衷
10灾难危及生命安全,产品报废,造成重大损害经常发生故障占比≥20%
8致命造成人员严重受伤,产品严重损坏时有发生故障占比10%~20%
6中度造成人员中度受伤,产品中度损坏偶然发生故障占比1%~10%
4轻度造成人员轻度受伤,产品轻度损坏很少发生故障占比0.1%~1%
2极小不造成人员受伤,仅需增加计划性维修极少发生故障占比≤0.1%

表2

维修性等级评定"

等级246810
停机时间/h12024821/3

图1

2BMQF-6/12型免耕播种机结构"

表3

免耕播种机系统结构划分"

子系统组件零件种类

切茬

装置

刀具圆盘侧切刀
刀轴刀轴、轴承、端盖、防草板

播种

系统

排种器排种器芯、排种器轴、轴承、壳体
播种腿播种腿、排种管

排肥

系统

排肥器排肥器芯、排肥器轴、轴承、壳体
肥腿肥腿犁铧、犁尖、排肥管

镇压

装置

地轮地轮、地轮轴
刮土装置挡泥梁、挡泥板

传动

系统

变速箱齿轮、箱体、传动轴、轴承/端盖、联轴器
调整手柄手柄、定位盘、锁紧盘
传动链链、链轮、链轮罩、轴承
机架机架机架、拉杆、U形螺栓/卡板、盖板、侧板
支臂支臂、扇形板、限位螺栓
种肥箱种肥箱箱体、隔板、种刷、肥刷

图2

免耕播种机部分常见故障"

表4

排肥系统FMECA分析"

组件失效模式零件数量严重度发生度严重度转换值转换后RPN维修性环境条件技术水平
排肥器排肥器芯损坏漏肥64224.532549.065170.33330.6
排肥器轴卡死34224.532549.06517
壳体破损64124.532524.53257
排肥腿排肥腿犁铧弯曲变形64224.532549.065170.44440.4
犁尖掉落6254.953024.765210
排肥管损坏变形/堵塞6122.22554.451110

表5

传动系统FMECA分析"

组件失效模式零件数量严重度发生度严重度转换值转换后RPN维修性环境条件技术水平
变速箱齿轮断齿562121.5104243.020850.33330.72
传动轴损坏361121.5104121.51046
联轴器损坏15354.5982163.79457
调整手柄调整手柄损坏/过紧2224.95309.906190.33330.6
传动链链条损坏25354.5982163.794570.33330.8
链轮轮牙折断45254.5982109.19637
链轮罩受损变形1234.953014.85918
轴承/端盖轴承/端盖磨损154124.532524.532580.33330.9

表6

免耕播种机IFM评分矩阵"

子系统危害度A1改进潜力A2复杂度A3维修性A4环境条件A5技术水平A6
切茬装置0.16750.15300.19050.18350.20770.1479
播种系统0.03040.18830.19640.16200.13850.2260
排肥系统0.03040.15040.16070.17520.16920.1791
镇压装置0.16750.18340.08930.15900.20770.1114
传动系统0.10150.15640.20830.15190.13850.2034
机架0.50260.16850.15480.16840.13850.1323

表7

基于改进IFM的可靠性分配结果"

子系统失效率权重故障率可靠性
总计1.00000.05000.9509
切茬装置0.12160.00610.9939
播种系统0.32770.01640.9836
排肥系统0.35720.01790.9821
镇压装置0.07860.00390.9961
传动系统0.09010.00450.9955
机架0.02480.00120.9988

表8

不同方法的可靠性分配结果对比"

子系统FOOKimYadavIFM改进IFM
切茬装置98.675598.860099.436599.531399.3920
播种系统99.404199.333098.738498.668098.3615
排肥系统99.248298.052598.420297.820498.2140
镇压装置99.176299.646299.530199.890199.6069
传动系统99.297899.243199.386699.153699.5495
机架99.198399.865299.488299.936599.8760

图3

不同方法的可靠性分配结果对比注:Unit1为切茬装置;Unit2为播种系统;Unit3为排肥系统;Unit4为镇压装置;Unit5为传动系统;Unit6为机架。"

1 国务院. 国务院关于加快推进农业机械化和农机装备产业转型升级的指导意见[EB/OL]. [2018-12-29]. .
2 中华人民共和国农业农村部农业机械化管理司. 2020年玉米免耕播种机质量调查报告[EB/OL]. [2021-02-20]. .
3 郝庆波, 杨兆军, 陈传海, 等. 基于区间层次分析法的数控机床可靠性预计[J]. 吉林大学学报:工学版, 2012, 42(4): 845-850.
Hao Qing-bo, Yang Zhao-jun, Chen Chuan-hai, et al. Reliability prediction for NC machine tool based on interval AHP[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(4): 845-850.
4 宋林, 王立平, 吴军, 等. 基于信息物理融合和数字孪生的可靠性分析[J]. 吉林大学学报:工学版, 2022, 52(2): 439-449.
Song Lin, Wang Li-ping, Wu Jun, et al. Reliability analysis based on cyber-physical system and digital twin[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 439-449.
5 Kuo W, Prasad V R, Tillman F A, et al. Optimal reliability design:fundamentals and applications[M]. Cambridge: Cambridge University Press, 2006.
6 Salazar D, Rocco C M, Galvan B J. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms[J]. Reliability Engineering & System Safety, 2006, 91(9): 1057-1070.
7 Yalaoui A, Chu C, Chatelet E. Reliability allocation problem in a series-parallel system[J]. Reliability Engineering & System Safety, 2005, 90(1): 55-61.
8 Kapur K C, Lamberson L R. Reliability in engineering design[M]. New York: John Wiley & Sons, 1977.
9 Catelani M, Ciani L, Patrizi G, et al. Reliability allocation procedures in complex redundant systems[J]. IEEE Systems Journal, 2017,12(2):1-11.
10 Advisory Group of Reliability of Electronic Equipment (AGREE) Reliability of military electronic equipment[M]. Washington, DC: Office of the Assistant Secretary of Defense Research and Engineering, 1957.
11 向宇,黄大荣,黄丽芬. 基于灰色关联理论AGREE方法的BA系统可靠性分配[J]. 计算机应用研究,2010,27(12):4489-4491.
Xiang Yu, Huang Da-rong, Huang Li-fen. Reliability allocation of BA system based on grey relative theory and AGREE[J]. Application Research of Computers, 2010, 27(12):4489-4491.
12 Anderson R T. Reliability design handbook[M]. Genoal: IIT Research Institute, 1976.
13 Di Bona G, Silvestri A, et al. Reliability target assessment based on integrated factors method (IFM): a real case study of a sintering plant[J]. Journal of Failure Analysis and Prevention, 2016, 16(6):1038-1051.
14 Di Bona G, Falcone D, Silvestri A, et al. IFM target 2.0: an innovative method to define reliability target for prototype systems[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12): 3349-3367.
15 Department of Defense of USA. MIL-H , Electronic design reliability handbook[S].
16 Kim K O, Yang Y, Zuo M J. A new reliability allocation weight for reducing the occurrence of severe failure effects[J]. Reliability Engineering & System Safety, 2013, 117:81-88.
17 Yadav O P, Zhuang X. A practical reliability allocation method considering modified criticality factors [J]. Reliability Engineering & System Safety, 2014, 129:57-65.
18 张玉刚,孙杰,喻天翔. 考虑不同失效相关性的系统可靠性分配方法[J]. 机械工程学报,2018,54(24):206-215.
Zhang Yu-gang, Sun Jie, Yu Tian-xiang. A reliability allocation method considering failure correlation based on vine copula[J]. Journal of Mechanical Engineering, 2018,54(24):206-215.
19 Zhang Y G, Yu T, Song B. A reliability allocation method of mechanism considering system performance reliability[J]. Quality and Reliability Engineering, 2019, 35(7): 2240-2260.
20 Li G, Zhong Y, Chen C, et al. Reliability allocation method based on linguistic neutrosophic numbers weight Muirhead mean operator[J]. Expert Systems with Applications, 2022, 193: No. 116504.
21 . 故障模式、影响及危害性分析指南 [S].
22 蒋平, 李浩泽, 杜洪恿, 等. 基于FMECA方法的旋耕机可靠性分析[J]. 中国农机化学报, 2019, 40(12): 212-216.
Jiang Ping, Li Hao-ze, Du Hong-yong, et al. Reliability analysis of rotary tiller based on FMECA method[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 212-216.
23 Wang Yi-qiang, Richard C.M. Yam, Ming J. Zuo,et al. A comprehensive reliability allocation method for design of CNC lathes[J]. Reliability Engineering & System Safety, 2001, 72(3): 247-252.
24 Department of Defense. MIL HDBK 217F, Reliability Prediction of Electronic Equipment[Z].
[1] 张国忠,丁凯权,李正博,陈龙,唐楠锐,刘婉茹,黄海东,周勇,王洪昌. 基于泥鳅体表的水稻直播机仿生滑板设计与试验[J]. 吉林大学学报(工学版), 2024, 54(5): 1482-1492.
[2] 张伏,娄立民,钱丹,王世强,冯春凌,赵一荣. 大方捆打捆机压缩机构优化设计及试验[J]. 吉林大学学报(工学版), 2024, 54(4): 1166-1174.
[3] 冯斌,张涛,梁涛,张莹,唐兴隆,王关平. 电驱式青贮饲料打捆裹膜机设计与试验[J]. 吉林大学学报(工学版), 2024, 54(2): 564-573.
[4] 胡斌,袁成林,解彦宇,郭孟宇,罗昕,潘峰,李俊伟. 基于水泵负压输送的切膜排杂装置设计与试验[J]. 吉林大学学报(工学版), 2024, 54(1): 268-280.
[5] 马帅,徐丽明,许述财,牛丛,闫成功,谭好超. 刮刷组合式葡萄藤防寒土清土机设计与试验[J]. 吉林大学学报(工学版), 2024, 54(1): 294-312.
[6] 史瑞杰,戴飞,赵武云,杨发荣,张锋伟,赵一鸣,曲浩,王天福,郭军海. 自走式藜麦联合收割机设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2686-2694.
[7] 周鹏飞,陈学庚,蒙贺伟,梁荣庆,张炳成,坎杂. 滚筒式机收膜杂除土装置设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2718-2731.
[8] 刘伟健,罗锡文,曾山,文智强,曾力. 履带式再生稻收获机田间转弯机理和性能试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2695-2705.
[9] 石林榕,赵武云. 西北寒旱农区胡麻滚勺式精量穴播器的设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2706-2717.
[10] 张茂健,金敬福,陈奕颖,陈廷坤. 轮式拖拉机对称结构的振动特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2136-2142.
[11] 耿端阳,纪晓琦,牟孝栋,李华彪,杨昊霖,姚艳春,武继达. 构树收获割台设计与试验[J]. 吉林大学学报(工学版), 2023, 53(7): 2152-2164.
[12] 曹肆林,谢建华,杨豫新,刘永瑞,卢勇涛,孙博. 侧排式棉秸秆还田及残地膜回收联合作业机的设计与试验[J]. 吉林大学学报(工学版), 2023, 53(5): 1514-1528.
[13] 张学军,黄爽,史增录,于永良,周鑫城,靳伟,陈勇,洪佳. 残膜捡拾打包机的设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1220-1230.
[14] 陈永,陈学庚,何浩猛,罗昕,余幸,胡斌. 基于灌溉引水渠介质的膜秆分离装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1245-1256.
[15] 朱光强,李天宇,周福君,王文明. 鲜食玉米仿生摘穗装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1231-1244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!