吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 268-280.doi: 10.13229/j.cnki.jdxbgxb.20221045

• 农业工程·仿生工程 • 上一篇    

基于水泵负压输送的切膜排杂装置设计与试验

胡斌1,2(),袁成林1,2,解彦宇1,2,郭孟宇1,2,罗昕1,2,潘峰1,2,李俊伟1,2   

  1. 1.石河子大学 机械电气工程学院,新疆 石河子 832000
    2.现代农业机械兵团重点实验室,新疆 石河子 832003
  • 收稿日期:2022-08-16 出版日期:2024-01-30 发布日期:2024-03-28
  • 作者简介:胡斌(1968-),男,教授,博士.研究方向:农业机械设计与性能试验.E-mail:hb_mac@sina.com
  • 基金资助:
    国家自然科学基金项目(51865051);现代农业机械兵团重点实验室项目(BTNJ2019003)

Design and test of cutting film and removal impurities device based on negative pressure conveying of water pump

Bin HU1,2(),Cheng-lin YUAN1,2,Yan-yu XIE1,2,Meng-yu GUO1,2,Xin LUO1,2,Feng PAN1,2,Jun-wei LI1,2   

  1. 1.College of Mechanical and Electronic Engineering,Shihezi University,Shihezi 832000,China
    2.Key Laboratory of Modern Agricultural Machinery Corps,Shihezi 832003,China
  • Received:2022-08-16 Online:2024-01-30 Published:2024-03-28

摘要:

针对机收膜杂混料因相互缠绕难以分离回收的技术问题,依据机收膜杂混料主成分悬浮特性、形体尺寸和剪切特性的差异,提出在水泵负压输送作用下,旋流沉降和切膜过滤排杂新方法,创新设计切膜排杂装置,理论分析切膜排杂机构的力学特性,搭建机收膜杂混料切膜排杂试验装置,开展三因素三水平二次回归正交试验,建立了多目标响应面回归模型,并进行优化与试验验证。结果表明:碎膜合格率影响的主次因素顺序为:动刀转速、定刀缝隙宽度、动刀壁半径;碎膜含杂率影响的主次因素顺序为:动刀转速、动刀壁半径、定刀缝隙宽度。当动刀转速为954 r/min、定刀缝隙宽度为2.8 mm、动刀壁半径为80 mm时,碎膜合格率为88.80%,碎膜含杂率为7.51%,优化试验结果与模型预测值相对误差小于5%。本文研究可为机收膜杂混料的切碎分离方法及装备研究提供参考。

关键词: 农业机械, 机收膜杂混料, 切碎分离, 负压输送, 过滤排杂

Abstract:

To solve the technical problem that it is difficult to separate and recover the machine-collected film and impurities due to intertwining. According to the differences of suspension characteristics, shape size and shearing characteristics of the main components of the machine-collected film and impurities, a new method of separating and removing the miscellaneous material by swirl settlement, cutting film filtration and removing impurities under the negative pressure of the water pump was proposed, and the device of cutting film and removal impurities was innovatively designed. The mechanical characteristics of the device were analyzed theoretically, and a test device was built. The orthogonal test of three-factor, three-level quadratic regression was carried out, and a multi-objective response surface regression model was established, which was optimized and verified by experiments. The results show that the order of primary and secondary factors influencing the pass rate of broken film is: rotational speed of movable knife, gap width of fixed knife and radius of movable knife wall. The order of primary and secondary factors influencing the crushed film rate is: rotational speed of movable cutter, radius of movable cutter wall and width of gap of fixed cutter. For crushed film impurity rate: rotational speed of movable cutter, width of gap of fixed cutter and radius of movable cutter wall. When the rotating speed of movable cutter is 954 r/min, the width of gap of fixed cutter is 2.8 mm and radius of movable cutter wall is 80 mm, the crushed film rate is 88.80% and the crushed film impurity rate is 7.51%. The relative error between the optimized test result and the predicted value of model is less than 5%. The main conclusions can be used as reference for the study of cutting and separating methods and equipment of the machine-collected film and impurities.

Key words: agricultural machine, machine-collected film and impurities, cutting and separating, negative pressure conveying, filtration and removal impurities

中图分类号: 

  • S225

图1

结构工作原理示意图"

图2

排杂动刀结构参数"

图3

过滤定刀结构参数"

图4

切割地膜受力分析图"

图5

过滤排秆受力分析图"

图6

交互项对响应指标的响应曲面"

图7

装置作业效果"

表1

试验因素与水平"

编码动刀转速n/ (r·min-1定刀缝隙 宽度e/mm动刀壁半径R1/mm
-1765274
0930381
11095488

表2

试验设计方案与结果"

序号试验因素评价指标
X1/(r·min-1X2/mmX3/mmY1/%Y2/%
1-1-1079.288.92
21-1088.3110.05
3-11079.959.36
411081.859.89
5-10-180.398.76
610-185.0311.71
7-10181.269.75
810186.898.91
90-1-184.569.41
1001-178.4310.37
110-1186.268.92
1201182.4310.09
1300091.587.03
1400090.386.63
1500089.326.72
1600089.866.85
1700089.927.01

表3

回归模型方差分析"

方差来源碎膜合格率Y1/%碎膜含杂率Y2/%
平方和自由度FP[a]平方和自由度FP[a]
模型301.93937.66<0.0001**35.41938.7<0.00011**
X156.18163.07<0.0001**1.78117.480.00411**
X231.01134.810.0006**0.7317.140.0319*
X38.8819.970.016*0.8318.180.0243*
X1X212.71114.270.0069*0.0910.890.3781
X1X30.2510.280.61613.59135.320.0006**
X2X31.3211.480.26250.01110.110.7515
X1257.52164.57<0.0001**8.21180.72<0.0001**
X2273.16182.14<0.0001**7.24171.19<0.0001**
X3241.08146.120.0003**9.97198.04<0.0001**
残差6.2470.717
失拟项3.3331.530.33680.5936.360.0529
误差2.940.124
总和308.161636.1216

表4

模型预测值与验证试验结果对比"

试验编号碎膜合格率Y1/%碎膜含杂率Y2/%
186.796.52
287.247.54
388.956.89
492.587.46
588.427.66
平均值/%88.807.21
预测值/%90.896.91
相对误差/%2.304.34
1 胡志娥, 肖谋良, 王双, 等. 地膜覆盖对农田土壤养分和生态酶计量学特征的影响[J]. 环境科学, 2022, 43(3): 1649-1656.
Hu Zhi-e, Xiao Mou-liang, Wang Shuang, et al. Effects of plastic mulch film on soil nutrients and ecological enzyme stoichiometry in farmland[J]. Environmental Science, 2022, 43(3): 1649-1656.
2 祁虹, 赵贵元, 王燕, 等. 我国棉田残膜污染危害与治理措施研究进展[J]. 棉花学报, 2021, 33(2): 169-179.
Qi Hong, Zhao Gui-yuan, Wang Yan, et al. Research progress on pollution hazards and prevention measures of residual film in cotton field in China[J]. Cotton Science, 2021, 33(2): 169-179.
3 Yang W, Qi J, Mumhammad A, et al. Impact of information acquisition on farmers' willingness to recycle plastic mulch film residues in China[J]. Journal of Cleaner Production, 2021, 297(4): No.126656.
4 胡灿, 王旭峰, 陈学庚, 等. 新疆农田残膜污染现状及防控策略[J]. 农业工程学报, 2019, 35(24): 223-234.
Hu Can, Wang Xu-feng, Chen Xue-geng, et al. Current situation and control strategies of residual film pollution in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 223-234.
5 潘峰,罗昕,胡斌, 等. 机收棉秆切割装置的设计与试验[J]. 农机化研究, 2022, 44(5): 147-151.
Pan Feng, Luo Xin, Hu Bin, et al. Design and test of the cutting device of the machine collecting rod[J]. Journal of Agricultural Mechanization Research, 2022, 44(5): 147-151.
6 Liang Rong-qing, Zhang Bing-cheng, Zhou Peng-fei, et al. Power consumption analysis for multi-edge tooth type shredding test device of the residual mulch film and impurities mixture[J]. Computers and Electronics in Agriculture, 2022, 196:No.106898.
7 彭强吉, 李成松, 康建明, 等. 气力式圆筒筛膜杂分离机改进设计与试验[J]. 农业机械学报, 2020, 51(8): 126-135.
Peng Qiang-ji, Li Cheng-song, Kang Jian-ming,et al. Improved design and experiment on pneumatic cylinder sieve film hybrid separator[J]. Transactions of The Chinese Society of Agricultural Machinery, 2020, 51(8): 126-135.
8 石鑫, 牛长河, 王学农, 等. 滚筒筛式废旧地膜与杂质风选装置设计[J]. 农业工程学报, 2017, 33(18): 19-26.
Shi Xin, Niu Chang-he, Wang Xue-nong, et al. Design of roller sieve waste plastic film and trash winnowing machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(18): 19-26.
9 Gu Feng-wei, Yang Meng, Hu Zhi-chao, et al. Experiment and optimization of high-efficiency mechanical separation of peanut seedlings and residual film based on suspension velocity[J]. Transactions of the ASABE, 2021, 64(4): 1381-1389.
10 杨猛, 张延化, 张冲, 等. 先揉切后分离风筛组合式花生膜秧分离装置设计与试验[J]. 农业机械学报, 2020, 51(12): 112-121.
Yang Meng, Zhang Yan-hua, Zhang Chong, et al. Design and experiment of fan-sieve combined peanut film-seedling separating device based on shredding and separating[J]. Transactions of The Chinese Society of Agricultural Machinery, 2020, 51(12): 112-121.
11 何浩猛, 胡斌, 李俊虹, 等. 叶轮驱动式机收残膜水洗分离设备研究与试验[J]. 农机化研究, 2020, 42(9): 151-155.
He Hao-meng, Hu Bin, Li Jun-hong, et al. Research and experiment of the machine collecting residual film in the impeller-driven washing separation device[J]. Journal of Agricultural Mechanization Research, 2020, 42(9): 151-155.
12 陈永, 陈学庚, 何浩猛, 等. 基于灌溉引水渠介质的膜秆分离装置设计与试验[J]. 吉林大学学报: 工学版, 2023, 53(4): 1245-1256.
Chen Yong, Chen Xue-geng, He Hao-meng, et al. Design and experiment of separation device of plastic film and cotton stalks based on irrigation diversion channel media[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1245-1256.
13 何浩猛, 胡斌, 潘峰, 等. 叶轮扰动水介质对地膜与棉秆沉降聚集行为影响与试验[J]. 农业工程学报, 2021, 37(2): 86-95.
He Hao-meng, Hu Bin, Pan Feng, et al. Effects and experiment on settlement and aggregation behavior of plastic film and cotton stalk under the action of disturbing water by the impeller[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 86-95.
14 Pan Feng, Hu Bin, Luo Xin, et al. Design and test of a shearing and breaking device for a plastic film and cotton stalks mixture[J]. Transactions of the ASABE, 2021, 64(2): 545-555.
15 胡斌, 刘策, 郭孟宇, 等. 一种切割清堵水洗式残膜分离装置[P]. 中国: CN111673949A, 2020-09-18.
16 张学军, 黄爽, 史增录, 等. 残膜捡拾打包机的设计与试验[J]. 吉林大学学报: 工学版, 2023, 53(4): 1220-1230.
Zhang Xue-jun, Huang Shuang, Shi Zeng-lu, et al. Design and test of the remaining film picking and Baling machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1220-1230.
17 王少伟, 李善军, 张衍林, 等. 山地果园开沟机倾斜螺旋式开沟部件设计与优化[J].农业工程学报,2018, 34(23): 11-22.
Wang Shao-wei, Li Shan-jun, Zhang Yan-lin, et al. Design and optimization of inclined helical ditching component for mountain orchard ditcher[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 11-22.
18 邱进, 吴明亮, 官春云, 等. 动定刀同轴水稻秸秆切碎还田装置结构设计与试验[J]. 农业工程学报, 2015, 31(10): 11-19.
Qiu Jin, Wu Ming-liang, Guan Chun-yun,et al. Design and experiment of chopping device with dynamic fixed knife coaxial for rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 11-19.
19 蒋德莉, 陈学庚, 颜利民, 等. 随动式残膜回收机清杂系统作业参数优化[J]. 农业工程学报, 2019, 35(19): 1-10.
Jiang De-li, Chen Xue-geng, Yan Li-min, et al. Optimization of working parameters of cleaning system for master-slave residual plastic film recovery machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 1-10.
20 Braunack M, Johnston D, Gauthier E, et al. Soil temperature and soil water potential under thin oxodegradable plastic film impact on cotton crop establishment and yield[J]. Field Crops Research, 2015, 184: 91-103.
21 靳伟, 张学军, 丁幼春, 等. 基于EDEM-Fluent的残膜与杂质悬浮分离仿真与试验[J]. 农业机械学报, 2022, 53(4): 89-98.
Jin Wei, Zhang Xue-jun, Ding You-chun, et al. Experiment on suspension separation of residual film and impurity based on EDEM-Fluent coupling[J]. Transactions of the Chinese Society of Agricultural Machinery, 2022, 53(4): 89-98.
22 周鹏飞, 陈学庚, 蒙贺伟, 等. 滚筒式机收膜杂除土装置设计与试验[J]. 吉林大学学报:工学版, 2023, 53(9): 2718-2731.
Zhou Peng-fei, Chen Xue-geng, Meng He-wei, et al. Design and experiment of trommel with function of separating soil from residual film mixture[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2718-2731.
23 Liang Rong-qing, Zhang Bing-cheng, Zhou Peng-fei, et al. Cotton length distribution characteristics in the shredded mixture of mechanically recovered residual films and impurities[J]. Industrial Crops and Products, 2022, 182: No.114917.
[1] 史瑞杰,戴飞,赵武云,杨发荣,张锋伟,赵一鸣,曲浩,王天福,郭军海. 自走式藜麦联合收割机设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2686-2694.
[2] 周鹏飞,陈学庚,蒙贺伟,梁荣庆,张炳成,坎杂. 滚筒式机收膜杂除土装置设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2718-2731.
[3] 刘伟健,罗锡文,曾山,文智强,曾力. 履带式再生稻收获机田间转弯机理和性能试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2695-2705.
[4] 石林榕,赵武云. 西北寒旱农区胡麻滚勺式精量穴播器的设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2706-2717.
[5] 张茂健,金敬福,陈奕颖,陈廷坤. 轮式拖拉机对称结构的振动特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2136-2142.
[6] 耿端阳,纪晓琦,牟孝栋,李华彪,杨昊霖,姚艳春,武继达. 构树收获割台设计与试验[J]. 吉林大学学报(工学版), 2023, 53(7): 2152-2164.
[7] 曹肆林,谢建华,杨豫新,刘永瑞,卢勇涛,孙博. 侧排式棉秸秆还田及残地膜回收联合作业机的设计与试验[J]. 吉林大学学报(工学版), 2023, 53(5): 1514-1528.
[8] 张学军,黄爽,史增录,于永良,周鑫城,靳伟,陈勇,洪佳. 残膜捡拾打包机的设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1220-1230.
[9] 陈永,陈学庚,何浩猛,罗昕,余幸,胡斌. 基于灌溉引水渠介质的膜秆分离装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1245-1256.
[10] 朱光强,李天宇,周福君,王文明. 鲜食玉米仿生摘穗装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1231-1244.
[11] 顿国强,刘文辉,吴星澎,毛宁,纪文义,马洪岩. 螺旋挤压式精量排肥器的仿真优化及试验[J]. 吉林大学学报(工学版), 2023, 53(10): 3026-3037.
[12] 顿国强,刘文辉,毛宁,吴星澎,纪文义,马洪岩. 交替换岗式大豆小区育种排种器优化设计与试验[J]. 吉林大学学报(工学版), 2023, 53(1): 285-296.
[13] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
[14] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[15] 高文英,林静,李宝筏,王伟,谷士艳. 秸秆深埋还田机振动特性分析与结构优化[J]. 吉林大学学报(工学版), 2022, 52(4): 970-980.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!