吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1806-1816.doi: 10.13229/j.cnki.jdxbgxb.20230825

• 农业工程·仿生工程 • 上一篇    

重型拖拉机新型双离合全动力换挡变速箱液压系统设计与试验

王建1,马文虎1,谢太林2,郭华2,尹必峰1   

  1. 1.江苏大学 汽车与交通工程学院,江苏 镇江 212013
    2.江苏常发农业装备股份有限公司研究院,江苏 常州 213000
  • 收稿日期:2023-08-04 出版日期:2025-05-01 发布日期:2025-07-18
  • 作者简介:王建(1978-),男,教授,博士. 研究方向:节能与新能源动力系统. E-mail: wangjian@ujs. edu. cn
  • 基金资助:
    江苏省科技厅现代农业重点及面上项目(BE2022326)

Design and test of hydraulic system for new dual-clutch full-powershift transmission of heavy-duty tractor

Jian WANG1,Wen-hu MA1,Tai-lin XIE2,Hua GUO2,Bi-feng YIN1   

  1. 1.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China
    2.Changzhou Changfa Technology Development Co. ,Ltd. ,Changzhou 213000,China
  • Received:2023-08-04 Online:2025-05-01 Published:2025-07-18

摘要:

设计了用于全新开发223.7 kW(300 hp)重型拖拉机新型双离合全动力换挡变速箱的液压系统,以达到换挡动力不中断和变速箱冷却润滑的目的。建立了AMESim动力换挡仿真模型,分析了液压系统流量、油压特性和换挡过程离合器与同步器的动态特性。仿真结果表明:离合器液压缸建压时间少于1 s,泄压时间少于0.6 s,建压/泄压时压力稳定;同步器液压缸在0.3 s内建立稳定油压;冷却润滑子系统用时0.5 s建立0.22 MPa稳定油压,最大流量为57.6 L/min;离合器在换挡过程中完成动力的平稳过渡,同步器在换挡之前完成预选挡。搭建了新型双离合全动力换挡变速箱试验台架进一步验证,离合器和同步器液压缸油压试验结果与仿真结果基本一致,变速箱输出转速从270 r/min上升至310 r/min,最大波动量为31 r/min,变速箱输出转矩稳定在2 910 N·m附近,最大波动量为稳定值的10.1%,换挡过程无动力中断。仿真和试验结果验证了液压系统可以满足重型拖拉机新型双离合全动力换挡变速箱的工作需求,本文工作可为重型拖拉机双离合全动力换挡变速箱液压系统设计和计算提供参考和指导。

关键词: 动力机械工程, 重型拖拉机, 双离合, 全动力换挡变速箱, 液压系统

Abstract:

A hydraulic system was designed for the new dual-clutch full-powershift transmission of the newly developed 223.7 kW (300 hp) heavy-duty tractor, in order to achieve the purpose of uninterrupted shift and transmission cooling and lubrication. The AMESim dynamic shift simulation model was established, the flow and oil pressure properties of the hydraulic system as well as the dynamics of the clutches and synchronizers have been analyzed. The simulation results show that the pressure building time of the clutch hydraulic cylinder is less than 1 s, the pressure relief time is less than 0.6 s, and the pressure is stable during the pressure building/relief. The synchronizer hydraulic cylinder establishes stable oil pressure within 0.3 s; The cooling and lubrication subsystem takes 0.5 s to establish a stable oil pressure of 0.22 MPa, and the maximum flow rate is 57.6 L/min. The clutch completes the smooth transition of power during the shift, and the synchronizer completes the pre-selection before the shift. A new dual-clutch full-powershift transmission test bench was set up for further verification, the oil pressure test results of the clutch and synchronizer hydraulic cylinders are basically consistent with the simulation results, the output speed of the transmission increases from 270 r/min to 310 r/min, and the maximum wave momentum is 31 r/min, the output torque of the transmission is stable around 2 910 N·m, the maximum wave momentum is 10.1% of the stable value, and there is no power interruption during the shifting process. The simulation and test results verify that the hydraulic system can meet the working requirements of the new dual-clutch full-powershift transmission of heavy-duty tractor. The work in this paper can provide reference and guidance for the design and calculation of the hydraulic system of the dual-clutch full-powershift transmission of heavy-duty tractor.

Key words: power machinery and engineering, heavy-duty tractor, dual-clutch, full-powershift transmission, hydraulic system

中图分类号: 

  • TK5

表1

新型双离合全动力换挡变速箱参数"

参数数值
功率/kW223.7
连续输入转矩/(N·m)1 050
最大输入转矩/(N·m)1 450
额定输入转速/(r·min-12 200
平均速比1.21
挡位数量24F+8R
传动效率≥90%
离合器数量4
同步器数量11

图1

新型双离合全动力换挡变速箱传动系统结构简图"

图2

液压系统的总体设计简图"

图3

主油压控制回路简图"

图4

液压控制子系统简图"

图5

冷却润滑子系统简图"

图6

液压系统原理图"

图7

动力换挡仿真模型"

表2

AMESim仿真主要参数"

参 数数值
离合器摩擦因数0.14
离合器回位弹簧刚度/(N·mm-12 159
同步器摩擦因数0.11
同步器回位弹簧刚度/(N·mm-1304
1挡传动比8.17
2挡传动比7.05
主减速比4.96
轮边减速比8.31

图8

冷却润滑子系统流量变化曲线"

图9

冷却润滑子系统油压变化曲线"

图10

离合器液压缸油压变化曲线"

图11

离合器的转矩变化曲线"

图12

同步器液压缸油压变化曲线"

图13

同步器齿套与接合齿轮转速曲线"

图14

液压控制子系统流量变化曲线"

图15

新型双离合全动力换挡变速箱试验台架"

图16

离合器液压缸油压变化试验曲线"

图17

同步器液压缸油压变化试验曲线"

图18

变速箱输出转速和转矩曲线"

[1] 席志强, 周志立, 张明柱, 等. 拖拉机动力换挡变速器换挡特性与控制策略研究[J]. 农业机械学报, 2016, 47(11): 350-357.
Xi Zhi-qiang, Zhou Zhi-li, Zhang Ming-zhu, et al. Shift characteristics and control strategy of power shift transmission on tractor[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(11): 350-357.
[2] 傅生辉, 顾进恒, 李臻, 等. 基于MFAPC的动力换挡变速箱湿式离合器压力控制方法[J]. 农业机械学报, 2020, 51(12): 367-376.
Fu Sheng-hui, Gu Jin-heng, Li Zhen, et al. Pressure control method of wet clutch for PST of high-power tractor based on MFAPC algorithm[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(12): 367-376.
[3] 谢斌, 武仲斌, 毛恩荣. 农业拖拉机关键技术发展现状与展望[J]. 农业机械学报, 2018, 49(8): 1-17.
Xie Bin, Wu Zhong-bin, Mao En-rong. Development and prospect of key technologies on agricultural tractor[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(8): 1-17.
[4] 董春红. 简述拖拉机传动系统关键技术[J]. 拖拉机与农用运输车, 2022, 49(3): 9-13.
Dong Chun-hong. Analysis of tractor transmission system key technologies[J]. Tractor&Farm Transporter, 2022, 49(3): 9-13.
[5] 王韦韦, 陈黎卿, 杨洋, 等. 农业机械底盘技术研究现状与展望[J]. 农业机械学报, 2021, 52(8): 1-15.
Wang Wei-wei, Chen Li-qing, Yang Yang, et al. Development and prospect of agricultural machinery chassis technology[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(8): 1-15.
[6] 袁哲, 臧宏达, 马文星, 等.变速箱润滑油路仿真分析及结构优化[J]. 吉林大学学报: 工学版, 2020, 50(4): 1257-1264.
Yuan Zhe, Zang Hong-da, Ma Wen-xing, et al. Simulation analysis structure optimization of lubrication oil circuit of gearbox[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1257-1264.
[7] Ma K, Sun D, Sun G, et al. Design and efficiency analysis of wet dual clutch transmission decentralised pump-controlled hydraulic system[J]. Mechanism and Machine Theory, 2020, 154:No.104003.
[8] Lei Y L, Li X Z, Liang W P. Hydraulic system optimization and dynamic characteristic simulation of double clutch transmission[J]. Procedia Environmental Sciences, 2011, 10: 1065-1070.
[9] 李磊. 新型选择性输出双离合自动变速器电液伺服控制系统设计[D]. 合肥: 合肥工业大学机械工程学院, 2015.
Li Lei. Design for electro-hydraulic servo control system of new dual-clutch transmission with selective output[D]. Hefei: School of Mechanical Engineering, Hefei University of Technology, 2015.
[10] 李春芾, 席军强, 刘春颖. 多片湿式离合器快充油过程影响因素分析与控制[J]. 中国机械工程, 2019, 30(5): 513-518.
Li Chun-fu, Xi Jun-qiang, Liu Chun-ying. Analyses and control influence factors for multi-plate wet clutches in fast oil filling processes[J]. China Mechanical Engineering, 2019, 30(5): 513-518.
[11] 王光明, 朱思洪, 史立新, 等. 拖拉机液压机械无级变速箱控制与交互系统[J]. 农业机械学报, 2015, 46(6): 1-7.
Wang Guang-ming, Zhu Si-hong, Shi Li-xin, et al. Control and interaction system for tractor hydro-mechanical CVT[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(6): 1-7.
[12] 韩兵, 蔡忆昔, 张彤, 等. 强混合动力变速器液压系统设计与动态特性仿真[J]. 农业机械学报, 2011, 42(2): 43-47.
Han Bing, Cai Yi-xi, Zhang Tong, et al. Hydraulic system design and dynamic characteristic simulation of full hybrid transmission[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011, 42(2): 43-47.
[13] 熊序, 鲁植雄, 程准, 等. 重型拖拉机液压机械无级变速箱冷却润滑油液的分配优化[J]. 南京农业大学学报, 2021, 44(5): 993-1001.
Xiong Xu, Lu Zhi-xiong, Cheng Zhun, et al. Oil distribution optimization of cooling and lubrication for hydro-mechanical continuously variable trans mission of heavy-duty tractor[J]. Journal of Nanjing Agricultural University,2021,44(5): 993-1001.
[14] 陆中华, 程秀生, 冯巍. 湿式双离合器自动变速器的升档控制[J]. 农业工程学报, 2010, 26(5): 132-136.
Lu Zhong-hua, Cheng Xiu-sheng, Feng Wei. Up-shift control in wet double clutch transmission[J]. Transactions of the CSAE, 2010, 26(5): 132-136.
[15] 孙冬野, 陈旭东, 李宝刚, 等. 基于遗传算法的拖拉机动力换挡过程动态控制方法[J]. 重庆大学学报, 2019, 42(8): 1-14.
Sun Dong-ye, Chen Xu-dong, Li Bao-gang, et al. Dynamic control method of tractor powershift process based on genetic algorithm[J]. Journal of Chongqing University, 2019, 42(8): 1-14.
[16] 陆凯, 鲁杨, 邓晓亭, 等. 理论换段点下HMCVT换段离合器转矩交接及控制[J]. 农业工程学报, 2022, 38(19): 23-32.
Lu Kai, Lu Yang, Deng Xiao-ting, et al. Torque handover and control of the HMCVT shift clutches under the theoretical shift condition[J]. Transactions of the CSAE, 2022, 38(19): 23-32.
[17] 孟彬, 杨冠政, 徐豪, 等. 插装式2D电液比例流量阀的特性研究[J]. 机械工程学报, 2022, 58(20): 421-437.
Meng Bin, Yang Guan-zheng, Xu Hao, et al. Study on characteristics of 2D cartridge electro-hydraulic proportional flow rate valve[J]. Journal of Mechanical Engineering, 2022, 58(20): 421-437.
[18] 李晓祥, 王安麟, 樊旭灿, 等. 面向离合器接合过程的比例电磁阀动态特性模型与设计[J]. 西安交通大学学报, 2020, 54(5): 46-52.
Li Xiao-xiang, Wang An-lin, Fan Xu-can, et al. Dynamic characteristics model and design of proportional solenoid valve for clutch engagement process[J]. Journal of Xi´an Jiaotong University, 2020, 54(5): 46-52.
[19] 任延飞, 席军强, 陈慧岩, 等. 湿式离合器先导式电液调压阀时频域建模与分析[J]. 兵工学报, 2023, 44(1): 222-232.
Ren Yan-fei, Xi Jun-qaing, Chen Hui-yan, et al. Time-frequency domain modeling and analysis of dynamic characteristics of pilot-operated electro-hydraulic pressure regulating value for wet clutch[J]. Acta Armamentarii, 2023, 44(1): 222-232.
[20] 李云燕, 刘宇键, 陈漫. 湿式离合器充油控制响应特性研究[J]. 机床与液压, 2022, 50(9): 184-189.
Li Yun-yan, Liu Yu-jian, Chen Man. Wet clutch oiling control response characteristics analysis[J]. Machine Tool & Hydraulics, 2022, 50(9): 184-189.
[21] Zhao J, Xiao M, Bartos P, et al. Dynamic engagement characteristics of wet clutch based on hydro-mechanical continuously variable transmission[J]. Journal of Central South University, 2021, 28(5): 1377-1389.
[22] Lu T, Li H, Zhang J, et al. Supervisor control strategy of synchronizer for wet DCT based on online estimation of clutch drag torque[J]. Mechanical Systems and Signal Processing, 2016, 66: 840-861.
[23] Li H, Lu T, Zhang J, et al. Modelling and analysis of the synchronization process for a wet dual-clutch transmission[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(14): 1981-1995.
[24] Walker P D, Zhang N. Engagement and control of synchroniser mechanisms in dual clutch transmissions[J]. Mechanical Systems and Signal Processing, 2012, 26: 320-332.
[1] 商蕾,杨萍,杨祥国,潘建欣,杨军,张梦如. 基于APSO-BP-PID控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2024, 54(9): 2401-2413.
[2] 张帆,韩宁,杜青,部竞琦,彭志军. MMH凝胶液滴蒸发与燃烧过程的数值仿真[J]. 吉林大学学报(工学版), 2024, 54(11): 3114-3124.
[3] 陈贵升,罗国焱,李靓雪,黄震,李一. 柴油机颗粒捕集器孔道流场及其高原环境下噪声特性分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1892-1901.
[4] 王建,于威,王斌. 高原状态下甲醇替代率对柴油机燃烧与排放的影响[J]. 吉林大学学报(工学版), 2023, 53(4): 954-963.
[5] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[6] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[7] 罗勇,隋毅,申付涛,孙强,邓云霄,韦永恒. 基于双离合变速器的插电式混动系统起步控制策略[J]. 吉林大学学报(工学版), 2022, 52(12): 2765-2777.
[8] 赵文伯,李玉洁,邓俊,李理光,吴志军. 针阀运动规律及其对喷嘴内流和喷雾特性影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2234-2243.
[9] 罗勇,韦永恒,黄欢,肖人杰,任淋,崔环宇. 驾驶员意图识别的P2.5插混构型双离合器起步控制[J]. 吉林大学学报(工学版), 2021, 51(5): 1575-1582.
[10] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
[11] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[12] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[13] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[14] 杜常清,曹锡良,何彪,任卫群. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报(工学版), 2020, 50(5): 1556-1564.
[15] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郝燕玲, 牟宏伟. 自适应平方根中心差分卡尔曼滤波算法在捷联惯性导航系统大方位失准角初始对准中的应用[J]. 吉林大学学报(工学版), 2013, 43(01): 261 -266 .
[2] 曹晓宁, 刘玉梅, 苏建, 王秀刚, 李卓. 转向架质心高度的测定[J]. 吉林大学学报(工学版), 2013, 43(02): 329 -333 .
[3] 黄永平, 常鹏飞, 郭凯, 金玉善. 基于事件注入机制的软件调试方法与实现[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 373 -376 .
[4] 王素,朱玉明,陈南飞,高峰 . 功能梯度材料零件快速原型制造中的自适应切片算法[J]. 吉林大学学报(工学版), 2007, 37(03): 558 -0562 .
[5] 贾洪飞1,陈彬2,李国威2,张靖山3. 基于阻塞角的行人仿真中避碰方法[J]. 吉林大学学报(工学版), 2011, 41(6): 1577 -1580 .
[6] 刘敬猛, 孟艳艳, 陈伟海, 吴星明. 三自由度永磁球形电机的建模和电压控制[J]. 吉林大学学报(工学版), 2014, 44(2): 560 -566 .
[7] 包磊, 徐其志. 基于PCA变换和光谱补偿的遥感影像融合方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 88 -91 .
[8] 翟治芬, 严昌荣, 张建华, 张燕卿, 刘爽. 基于蚁群算法和支持向量机的节水灌溉技术优选[J]. 吉林大学学报(工学版), 2013, 43(04): 997 -1003 .
[9] 杨兆军,王继利,李国发,张新戈. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报(工学版), 2014, 44(3): 686 -691 .
[10] 柳岩,管晓方,宋玉泉 . 中国轿车发展的三个阶段[J]. 吉林大学学报(工学版), 2009, 39(01): 259 -265 .