吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (11): 3045-3055.doi: 10.13229/j.cnki.jdxbgxb.20211131

• 车辆工程·机械工程 •    下一篇

制动工况桃腔偶合器三维涡特征分析及仿真评价

柴博森1,2,3(),闫东1,王广义1,左文杰1,2   

  1. 1.吉林大学 机械与航空航天工程学院,长春 130022
    2.吉林大学 汽车底盘集成与仿生全国重点实验室,长春 130022
    3.中机试验装备股份有限公司,长春 130103
  • 收稿日期:2021-10-27 出版日期:2023-11-01 发布日期:2023-12-06
  • 作者简介:柴博森(1984-),男,副教授,博士.研究方向:液力传动与自动变速.E-mail:chaibs2012@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52075212);吉林省教育厅科学研究项目(JJKH20220977KJ);吉林大学汽车底盘集成与仿生全国重点实验室自由探索项目(ascl-zytsxm-202010);吉林省科技发展计划项目(20210101058JC);长安大学中央高校基本科研业务费专项项目(300102251511);中国博士后科学基金面上项目(2018M641776);吉林省博士后科研人员择优项目(KF204039)

Three-dimensional vortex characteristic analysis and simulation evaluation of peach cavity hydrodynamic coupling under braking condition

Bo-sen CHAI1,2,3(),Dong YAN1,Guang-yi WANG1,Wen-jie ZUO1,2   

  1. 1.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.National Key Laboratory of Automotive Chassis Integration and Bionics,Jilin University,Changchun 130022,China
    3.Sinotest Equipment Co. ,Ltd. ,Changchun 130103,China
  • Received:2021-10-27 Online:2023-11-01 Published:2023-12-06

摘要:

基于大涡模拟采用不同亚格子湍流模型仿真桃腔液力偶合器制动工况下流场,采用Q准则涡识别方法提取涡轮三维多尺度涡结构特征。通过粒子图像测速流场可视化试验验证及评价仿真结果的准确性和可靠性。从三维涡与二维流场提取两方面综合来看:WMLES S-Ω模型对叶片近壁面三维多尺度涡仿真信息丰富,小尺度涡捕获准确;WALE模型对叶片与外环交汇角隅区小尺度涡识别准确;WMLES S-Ω模型对主流区二维流场仿真结果真实,能呈现角隅区二次流现象;WMLES模型对叶片近壁面二维流场仿真数值分布与试验值吻合。研究结果可为液力偶合器流场仿真提供一定的理论与技术指导。

关键词: 机械工程, 液力偶合器, 大涡模拟, 多尺度涡, 粒子图像测速

Abstract:

Based on large eddy simulation, different sub-lattice turbulence models are used to simulate the flow field of a peach cavity hydrodynamic coupling under braking condition. The Q-criterion vortex recognition method is used to extract the three-dimensional multi-scale vortex structure inside the turbine. The unsteady multi-scale vortex spatiotemporal evolution law, energy transfer and loss mechanism inside the turbine is analysed based on the vortex dynamics theory. In order to verify and evaluate the accuracy and reliability of the simulation results, the velocity field and vorticity field are extracted based on flow field visualization experiment by particle image velocimetry. From the perspective of the qualitative identification of three-dimensional vortex structure spatiotemporal characteristics and the quantitative extraction of two-dimensional flow field parameters: WMLE S-Ω model simulation can provide rich information of three-dimensional multi-scale vortex of the near-wall region on the blade,the small-scale vortex can be captured accurately. WALE model simulation can accurately identify small-scale vortices in the corner area where the blade and the outer ring intersect. The simulation results of the two-dimensional flow field in the mainstream area by WMLES S-Ω model tend to be true, the secondary flow phenomenon in the corner area can be presented accurately. The numerical distribution of the two-dimensional flow field simulation in the near-wall region on the blade by WMLES model is consistent with experimental values. The research results can provide certain theoretical and technical guidance for the flow field simulation of hydrodynamic coupling.

Key words: mechanical engineering, hydrodynamic coupling, large eddy simulation, multi-scale vortex, particle image velocimetry

中图分类号: 

  • TH137.331

图1

液力偶合器计算模型"

图2

液力偶合器网格模型"

表1

条件设置"

分析类型设置条件
计算方法SIMPLE算法
迭代求解时间步长/s0.01
迭代计算总步数300
收敛残差10-4

图3

三维涡结构识别与提取"

图4

不同亚格子湍流模型仿真结果"

图5

试验测量系统"

表2

试验系统组成"

所属系统设备名称所属公司
机械部分

YS7124型号

三相异步变频调速电机

天津林普机电

有限公司

2CY 型号齿轮泵负载装置

CLZ 型号联轴器

长春通用机械厂
光学部分FIBER-21激光片光系统

中西安远讯光电科技

有限公司

EMT260激光转速测量仪上海摩亿公司
图像采集FR340-10G高清CCD相机广州元奥仪器有限公司

图6

静态图像标定"

表3

静态标定结果"

序号检测直径/px实际直径/mm标定系数/(mm·px-1
均值20.3320.098
120.9420.096
220.5620.097
318.8620.106
419.9620.098
521.0820.092
620.5620.097

图7

图像计算区域选取"

图8

PIV试验结果"

表4

涡轮单流道中间截面流速采样点数值"

序号流速/(m·s-1
SLWALEKETWMLESWMLESS-ΩPIV
13.73.83.43.43.72.7
24.23.43.73.83.43.1
31.92.92.42.03.13.2
41.32.11.31.61.63.5
51.61.40.81.21.42.4
61.51.30.40.60.93.2
71.11.21.00.20.72.5
80.31.61.11.91.92.0
92.73.13.92.63.64.7
105.33.55.25.45.25.1

表5

涡轮单流道中间截面涡量采样点数值"

序号涡量/s-1
SLWALEKETWMLESWMLES S-ΩPIV
1170160200470140-100
2650500750900450380
3210420330550350350
4360320200150930230
5130160350220360-260
6850100230230370220
7450320250230370220
8200320500370850-340
9890740900930950580
10170320130100270-320

图9

流速场结构分布"

图10

单流道流场结构"

图11

流场数据对比"

1 初长祥, 马文星. 工程机械液压与液力传动系统(液力卷)[M]. 北京: 化学工业出版社, 2015.
2 魏巍, 闫清东. 液力元件设计[M]. 北京: 北京理工大学出版社, 2015.
3 郭昀朋. 液力耦合器电动给水泵变频改造技术应用研究[D]. 广州: 华南理工大学机械与汽车工程学院, 2018.
Guo Yun-peng. Research on frequency conversion technology of electric feed pump by hydraulic coupling[D]. Guangzhou: School of Mechanical and Automotive Engineering, South China University of Technology, 2018.
4 Hur N, Kwak M, Moshfeghi M, et al. Numerical flow analyses of a two-phase hydraulic coupling[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2307-2317.
5 Silva M J D, Lu Y, Sühnel T, et al. Autonomous planar conductivity array sensor for fast liquid distribution imaging in a fluid coupling[J]. Sensors and Actuators A: Physical, 2008, 147(2): 508-515.
6 Hampel U, Hoppe D, Diele K H, et al. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2/3): 85-90.
7 Khatir T, Bouchetara M, Boutchicha D. Dynamics study of the operating behavior of hydrodynamic coupling by experimental and numerical simulation[J]. Mechanika, 2014, 20(4): 395-401.
8 卢秀泉, 马霖, 马文星, 等. 导轮关键参数对液力变矩偶合器性能的影响[J]. 吉林大学学报: 工学版, 2019, 49(2): 444-450.
Lu Xiu-quan, Ma Lin, Ma Wen-xing, et al. Effects of key parameters of stator on the performance of hydrodynamic coupling torque converter[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 444-450.
9 魏巍, 李双双, 安媛媛,等. 液力缓速器低充液率工况扰流柱起效条件判定方法[J]. 北京理工大学学报, 2017, 37(7): 672-676.
Wei Wei, Li Shuang-shuang, An Yuan-yuan, et al. Determing method for spoilers operating condition at low oil charging ratio in hydrodynamic retarder[J]. Transactions of Beijing Institute of Technology, 2017, 37(7), 672-676.
10 李晋, 闫清东, 王玉岭, 等. 液力变矩器泵轮内流场非定常流动现象研究[J]. 机械工程学报, 2016, 52(14): 188-195.
Li Jin, Yan Qing-dong, Wang Yu-ling, et al. Research on unsteady flow field of the pump in hydraulic torque converter[J]. Journal of Mechanical Engineering, 2016, 52(14), 188-195.
11 张嘉华, 崔红伟, 常宗旭,等. 基于CFD技术的调速型液力偶合器两相流分析方法研究[J]. 液压与气动, 2020(6): 90-96.
Zhang Jia-hua, Cui Hong-wei, Chang Zong-xu, et al. Two-phase flow analysis method of variable speed hydraulic coupling based on CFD techonology[J]. Chinese Hydraulics & Pneumatics, 2020(6): 90-96.
12 柴博森, 项玥, 马文星, 等. 制动工况下液力偶合器流场湍流模型分析与验证[J]. 农业工程学报, 2016, 32(3): 34-40.
Chai Bo-sen, Xiang Yue, Ma Wen-xing, et al. Analysis and experimental verification of turbulence models in flow simulation for hydrodynamic coupling under braking condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 34-40.
13 Goyal R, Gandhi B K, Cervantes M J. PIV measurements in francis turbine—a review and application to transient operations[J]. Renewable & Sustainable Energy Reviews, 2018, 81(2): 2976-2991.
14 Atkinson C, Buchner A J, Eisfelder M, et al. Time-resolved PIV measurements of a self-similar adverse pressure gradient turbulent boundary layer[J]. Mechanical & Aerospace Engineering, 2016(6): 54014301.
15 González-Neria I, Alonzo-Garcia A, Martínez-Delgadillo S A, et al. PIV and dynamic LES of the turbulent stream and mixing induced by a V-grooved blade axial agitator[J]. Chemical Engineering Journal, 2019, 374: 1138-1152.
16 李勇. 基于深度学习的粒子图像测速算法研究及应用[D]. 武汉: 华中科技大学机械科学与工程学院. 2018.
Li Yong. Deep learning based particle image velocimetry technology and its application[D]. Wuhan: School of Machanical Science and Engineering, Huazhong University of Science and Technology, 2018.
17 柴博森, 项玥, 刘勇, 等. 基于PIV试验的水介质液力偶合器涡轮流场仿真评价[J]. 华南理工大学学报:自然科学版, 2018, 46(5): 125-134.
Chai Bo-sen, Xiang Yue, Liu Yong, et al. Evaluation of flow field simulation of turbine in water-medium hydrodynamic coupling based on PIV experiment[J]. Journal of South China University of Technology(Natural Science Edition), 2018, 46(5): 125-134.
18 柴博森, 项玥, 马文星, 等. 制动工况下液力偶合器涡轮轴向漩涡流场试验分析[J]. 农业工程学报, 2017, 33(8): 69-75.
Chai Bo-sen, Xiang Yue, Ma Wen-xing, et al. Experimental analysis on axial vortex flow field of turbine in hydrodynamic coupler under braking condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 69-75.
19 卢秀泉,胡春玉,柴亚龙,等. 大功率液力偶合器调速工况瞬态流场特性[J]. 吉林大学学报:工学版, 2019, 49(5): 1539-1546.
Lu Xiu-quan, Hu Chun-yu, Chai Ya-long, et al. Analysis of transient flow field characteristics of large-scale hydrodynamic coupling under speed regulation[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1539-1546.
20 Nikiforova K V, Guseva E K, Garbaruk A V. Application of WMLES to wall-bounded flows with pressure gradient[J]. Journal of Physics: Conference Series, 2018, 1135(1): 12-98.
21 柴博森, 王玉建, 刘春宝, 等. 基于粒子图像测速技术的液力变矩器涡轮内流场测试与分析[J]. 农业工程学报, 2015, 31(12): 96-98.
Chai Bo-sen, Wang Yu-jian, Liu Chun-bao, et al. Test and analysis of internal flow field in turbine of hydrodynamic torque converter based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 96-98.
[1] 石林榕,赵武云. 西北寒旱农区胡麻滚勺式精量穴播器的设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2706-2717.
[2] 柴博森,王广义,闫东,朱国仁,张进,吕恒升. 液力变矩器空化数值模拟及对性能的影响[J]. 吉林大学学报(工学版), 2023, 53(8): 2236-2244.
[3] 陈国辉,徐业银,焦映厚. 考虑偏转的斜齿轮啮合刚度及其振动分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1902-1910.
[4] 陈贵升,罗国焱,李靓雪,黄震,李一. 柴油机颗粒捕集器孔道流场及其高原环境下噪声特性分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1892-1901.
[5] 于立娟,安阳,何佳龙,李国发,王升旭. 机电装备载荷谱外推技术研究进展及发展趋势[J]. 吉林大学学报(工学版), 2023, 53(4): 941-953.
[6] 李胜,朱佳,黄德惠,陈存福,费洪庆,丰伟,胡兴军. 空冷中冷器百叶窗翅片结构参数优化[J]. 吉林大学学报(工学版), 2023, 53(4): 998-1006.
[7] 王建,于威,王斌. 高原状态下甲醇替代率对柴油机燃烧与排放的影响[J]. 吉林大学学报(工学版), 2023, 53(4): 954-963.
[8] 朱凌,王秋成. 空间几何约束下新能源汽车驱动系统协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1509-1514.
[9] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[10] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[11] 李国发,王彦博,何佳龙,王继利. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版), 2022, 52(2): 267-279.
[12] 王磊,黄秉汉,丛家慧,回丽,周松,徐永臻. 超声冲击对搅拌摩擦焊缝疲劳性能的影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2542-2548.
[13] 赵文伯,李玉洁,邓俊,李理光,吴志军. 针阀运动规律及其对喷嘴内流和喷雾特性影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2234-2243.
[14] 胡兴军,张靖龙,辛俐,罗雨霏,王靖宇,余天明. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1557-1564.
[15] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .