吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1509-1514.doi: 10.13229/j.cnki.jdxbgxb20210830

• 车辆工程·机械工程 • 上一篇    

空间几何约束下新能源汽车驱动系统协调控制方法

朱凌1,2(),王秋成3   

  1. 1.天津大学 机械工程学院,天津 300072
    2.极氪汽车(宁波杭州湾新区)有限公司,浙江 宁波 315336
    3.浙江工业大学 机械工程学院,杭州 310014
  • 收稿日期:2021-08-27 出版日期:2022-07-01 发布日期:2022-08-08
  • 作者简介:朱凌(1979-),男,教授,博士.研究方向:机械工程.E-mail:wenzhilin0004@163.com
  • 基金资助:
    浙江省基础公益研究计划项目(LGG21E050016)

New energy vehicle drive system coordinated control method under spatial geometric constraints

Ling ZHU1,2(),Qiu-cheng WANG3   

  1. 1.College of Mechanical Sciences and Engineering,Tianjin University,Tianjin 300072,China
    2.Zeekr Automobile (Ningbo Hangzhou Bay New Zone) Co. ,Ltd. ,Ningbo 315336,China
    3.College of Mechanical Engineering,Zhejiang University of Technology,Hangzhou 310014,China
  • Received:2021-08-27 Online:2022-07-01 Published:2022-08-08

摘要:

利用传统方法控制新能源汽车驱动系统时,没有调控速度偏差,产生了车速慢、车轮滑移率高、车辆质心位移不稳定和电机转矩高的问题,因此在空间几何约束条件下,提出了新能源汽车驱动系统协调控制方法。首先利用空间几何方法约束新能源汽车驱动系统模型,从中找出并修复故障;修复完成后分析新能源汽车在无协调控制时的系统动力频域,得到新能源汽车的角速度差会随着总输入转矩差的变化而变化的结论,在此基础上将新能源汽车的发动机转矩输送到变速器中,获取了驱动系统的传递函数,同时得到了驱动系统动力性下降的原因,以此为依据利用动态协调控制方法调控新能源汽车速度偏差,实现驱动系统的协调控制。实验结果表明,本文方法控制后,新能源汽车车速相对较快、驱动车轮滑移率较低、车辆质心位移稳定,电机转矩更低,由此证明了本文方法可以稳定控制新能源汽车驱动系统,稳定性能较好。

关键词: 机械工程, 空间几何约束, 新能源汽车, 驱动系统, 协调控制

Abstract:

When using the traditional method to control the drive system of new energy vehicles, there is no speed deviation, resulting in the problems of slow speed, high wheel slip rate, unstable vehicle centroid displacement and high motor torque. Therefore, under the condition of spatial geometric constraints, the unified coordinated control method of new energy vehicle drive system is proposed. Firstly, the drive system model of a new energy vehicle is constrained by spatial geometry method to find and repair the fault. After the repair, the system power frequency domain of the new energy vehicle without coordinated control is analyzed, and the conclusion is obtained that the angular velocity difference of the new energy vehicle will change with the total input torque difference. Then, the engine torque of the new energy vehicle is transmitted to the transmission, the transfer function of the drive system is obtained, and the reason for the decline of the power performance of the drive system is obtained. Finally, the dynamic coordinated control method is used to regulate the speed deviation of new energy vehicles to realize the coordinated control of the drive system. The experimental results show that by the proposed control method, the speed of the new energy vehicle is relatively fast, the slip rate of the driving wheel is low, the vehicle centroid displacement is stable, and the motor torque is lower. It is proved that the proposed method can control the drive system of the new energy vehicle with good stability performance.

Key words: mechanical engineering, space geometric constraints, new energy vehicles, drive systems, coordinated control

中图分类号: 

  • TH165.4

图1

空间几何约束下的故障检测流程"

图2

新能源汽车控制前、后车速对比"

图3

驱动车轮滑移率控制前、后对比"

图4

车辆质心位移控制前、后对比"

表1

电力转矩管控前、后对比测试"

时间/s电机转矩/(N·m)
管控前管控后
1350130
2375120
3336153
4450127
5360122
6429129
7438135
8378175
9331150
1 阿迪拉·阿力木江, 蒋平, 董虹佳, 等. 推广新能源汽车碳减排和大气污染控制的协同效益研究——以上海市为例[J]. 环境科学学报, 2020, 40(5):1873-1883.
Adila Alimujiang, Jiang Ping, Dong Hong-jia, et al. Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting new energy vehicles: a case of Shanghai[J]. Acta Scientiae Circumstantiae, 2020, 40(5):1873-1883.
2 谌微微, 许茂增, 邢青松. 考虑续航能力的新能源汽车充电站递阶延时布局研究[J]. 交通运输系统工程与信息, 2020, 20(6):156-162.
Chen Wei-wei, Xu Mao-zeng, Xing Qing-song. A hierarchical delay layout model for electric vehicle charging stations considering cruising capability[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6):156-162.
3 肖丽, 高峰, 侯淑萍, 等. 新能源汽车驱动系统速度传感器故障检测与容错控制法[J]. 电工技术学报, 2020, 35(24):5075-5086.
Xiao Li, Gao Feng, Hou Shu-ping, et al. Speed sensor fault detection and tolerant control for new energy vehicle drive system[J]. Transactions of China Electrotechnical Society, 2020, 35(24):5075-5086.
4 付江涛, 宋书中, 付主木. 并联新能源汽车最优效率实时控制[J]. 控制理论与应用, 2019,36(7):1165-1173.
Fu Jiang-tao, Song Shu-zhong, Fu Zhu-mu. Real-time best efficiency control for parallel hybrid electric vehicle[J]. Control Theory & Applications, 2019, 36(7):1165-1173.
5 付主木, 关玉雪, 宋书中. PHEV 由纯电动向混合驱动模式切换协调控制设计[J]. 控制与决策, 2019, 34(1): 198-204.
Fu Zhu-mu, Guan Yu-xue, Song Shu-zhong. Switching coordination control design from motor driving mode to hybrid driving mode for PHEV[J]. Control and Decision, 2019, 34(1):198-204.
6 李耀军, 潘泉, 赵春晖, 等. 基于空间关系几何约束的无人机景象匹配导航[J]. 计算机应用研究, 2010, 27(10):3822-3825, 3846.
Li Yao-jun, Pan Quan, Zhao Chun-hui, et al. Scene matching navigation for UAV based on spatial relationship geometric constraints[J]. Application Research of Computers, 2010, 27(10):3822-3825, 3846.
7 王娟, 何星晨, 李军, 等. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5):510-520.
Wang Juan, He Xing-chen, Li Jun, et al. Simulation of heat transfer enhancement and flow resistance characteristics of twisted slice tubes with openings[J]. The Chinese Journal of Process Engineering, 2020, 20(5):510-520.
8 李华, 林飞, 杨中平, 等. 一种可提高转矩输出能力的高速列车牵引电机方波工况单环弱磁控制策略[J]. 铁道学报, 2019, 41(10):53-60.
Li Hua, Lin Fei, Yang Zhong-ping, et al. A single-loop field-weakening control strategy for high-speed train traction motor with increased torque output capability under six-step mode[J]. Journal of the China Railway Society, 2019, 41(10):53-60.
9 廖自力, 蔡立春, 张新喜. 轮毂电机驱动电动车稳定性横摆力矩控制研究[J]. 计算机仿真, 2020, 37(8):73-76, 86.
Liao Zi-li, Cai Li-chun, Zhang Xin-xi. Research on stability of yaw torque control of electric vehicle driven by hub motors[J]. Computer Simulation, 2020, 37(8):73-76, 86.
10 宋大凤, 云千芮, 杨南南, 等. 行星式混合动力客车的模型预测动态协调控制[J]. 哈尔滨工业大学学报, 2019, 51(1):150-156, 161.
Song Da-feng, Yun Qian-rui, Yang Nan-nan, et al. Model predictive dynamic coordinated control of planetary hybrid electric bus[J]. Journal of Harbin Institute of Technology, 2019, 51(1):150-156, 161.
[1] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[2] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[3] 李国发,王彦博,何佳龙,王继利. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版), 2022, 52(2): 267-279.
[4] 胡兴军,张靖龙,辛俐,罗雨霏,王靖宇,余天明. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1557-1564.
[5] 王殿海,沈辛夷,罗小芹,金盛. 车均延误最小情况下的相位差优化方法[J]. 吉林大学学报(工学版), 2021, 51(2): 511-523.
[6] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
[7] 翟富刚,尹燕斌,李超,田纬,乔子石. 伺服电动缸传动系统刚度建模与前馈控制[J]. 吉林大学学报(工学版), 2021, 51(2): 442-449.
[8] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[9] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[10] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[11] 陈学深,陈涛,武涛,马旭,曾令超,陈林涛. 覆草冬种马铃薯收获机稻草分离机构设计与试验[J]. 吉林大学学报(工学版), 2020, 50(2): 749-757.
[12] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[13] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[14] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[15] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!