吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2839-2844.doi: 10.13229/j.cnki.jdxbgxb20210404

• 交通运输工程·土木工程 • 上一篇    下一篇

基于博弈论的城市道路变道切入行为模型

程国柱1(),孙秋月1,刘玥波2(),陈纪龙1   

  1. 1.东北林业大学 交通学院,哈尔滨 150040
    2.吉林建筑科技学院 计算机科学与工程学院,长春 130114
  • 收稿日期:2021-05-06 出版日期:2022-12-01 发布日期:2022-12-08
  • 通讯作者: 刘玥波 E-mail:guozhucheng@nefu.edu.cn;55020692@qq.com
  • 作者简介:程国柱(1977-),男,教授,博士. 研究方向:道路交通安全与道路通行能力. E-mail:guozhucheng@nefu.edu.cn
  • 基金资助:
    黑龙江省自然科学基金项目(LH2020G002)

Cut⁃in behavior model based on game theoretic approach on urban roads

Guo-zhu CHENG1(),Qiu-yue SUN1,Yue-bo LIU2(),Ji-long CHEN1   

  1. 1.School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China
    2.School of Computer Science and Engineering,Jilin University of Architecture and Technology,Changchun 130114,China
  • Received:2021-05-06 Online:2022-12-01 Published:2022-12-08
  • Contact: Yue-bo LIU E-mail:guozhucheng@nefu.edu.cn;55020692@qq.com

摘要:

为解决城市道路变道切入行为带来的交通安全和道路拥堵问题,研究了变道切入行为在城市道路中的决策模型。在考虑安全收益、速度收益和变道收益的基础上,量化博弈双方的收益,并结合驾驶人变道意图给出变道切入行为中变道车和目标车道后车的收益函数,构建非合作博弈模型并求纳什均衡解;对模型中的收益参数进行标定,使用NGSIM数据进行模型校对。研究结果表明:模型对于城市道路变道车和邻后车的决策行为具有良好的拟合度,强制性变道切入行为中变道车和邻后车决策行为变量的RMSE分别为0.1385和0.4361,自由性变道切入行为中RMSE分别为0.2278和0.1748;在博弈行为中,安全收益比换道收益对变道车驾驶人的决策影响更大,其中自由性变道切入行为中更加明显;而速度收益始终比安全收益对邻后车驾驶人的决策影响更大,收益权重为0.9和0.1。

关键词: 交通运输系统工程, 变道模型, 混合策略博弈, 变道切入行为

Abstract:

In order to solve the problem of traffic safety and traffic congestion caused by cut-in behavior on urban roads, the decision model of cut-in behavior was proposed in the traditional environment and network environment. Considering the safety gain, speed gain and lane-changing gain, the benefits of both parties in the game were quantified, and the benefit function of lane-changing vehicle and lag vehicle in cut-in behavior was given to obtain a game model and the Nash equilibrium solution in view of the driver's intention to change lanes. The model was calibrated and tested using NGSIM data. The results show that the model has a good fitting degree for the decision behavior of lane change vehicles and lag vehicles on urban roads. RMSE of the decision behavior variables of lane-changing vehicles and lag vehicles are 0.1385 and 0.4361 for mandatory lane change cut-in behavior, and 0.2278 and 0.1748 for discretionary cut-in behavior, respectively.In the game behavior, the safety gain has a greater influence on the driver's decision than the lane-changing gain, and the discretionary behavior is more obvious.However, the speed gain always has a greater influence on the decision-making of the drivers behind than the safety gain, and the gain weight is 0.9 and 0.1.

Key words: engineering of communications and transportation system, lane-changing model, quantal response equilibrium, cut-in behavior

中图分类号: 

  • U491

图1

变道切入行为分析"

表1

变道切入行为博弈矩阵"

变道车
邻后车变道不变道

让行

不让行

S2C/V1-V2,0
0,-S10,0

表2

NGSIM数据说明"

字段说明取值
Vehicle_ID车辆编号-
Frame_ID时间帧号0.1 s
Local_X坐标XFeet
Local_Y坐标YFeet
v_Class车辆类型1-摩托车;2-小型车;3-大型车
v_Vel车辆速度Feet/s
Lane_ID车道编号-
Section_ID路段编号-
Movement车辆动作1-通过;2-左转;3-右转
O_Zone起点路段编号-
D_Zone终点路段编号-
Preceding跟驰前车-
Following跟驰后车-

表3

同一方向的起终点路段编号"

O_Zone101108103105107109110111
D_Zone208201211210209207205203

表4

部分标定数据"

Following_IDVehicle_ID

Frame_

ID

ΔsΔlΔv
11712053939.102594.6613.12
15615282828.179322.392.71
16015684841.897314.327.23
239215177246.05309.3472.82
297293193230.855537.2683.48
300299183832.213989.853.47
303305198133.838503.1444.66
1425308189321.209997.0910.32
326324207941.748741.4832.88
1 王雪松,杨敏明. 基于自然驾驶数据的变道切入行为分析[J]. 同济大学学报:自然科学版,2018, 46(8): 1057-1063.
Wang Xue-song, Yang Min-ming. Cut-in behavior analyses based on naturalistic driving data[J]. Journal of Tongji University(Natural Science), 2018, 46(8):1057-1063.
2 Talebpour A, Mahmassani H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163.
3 Ali Y, Zheng Z, Haque M M. Connectivity's impact on mandatory lane-changing behaviour: Evidences from a driving simulator study[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 292-309.
4 Talebpour A, Mahmassani H S, Hamdar S H. Modeling lane-changing behavior in a connected environment: a game theory approach[J]. Transportation Research Part C: Emerging Technologies, 2015, 59: 216-232.
5 Liu H X, Xin W P, Adams Z M, et al. A game theoretical approach for modeling merging and yielding behavior at freeway on-ramp section[C]∥Transportation and Traffic Theory, London, England,2007:196-211.
6 Wang M, Hoogendoorn S P, Daamen W, et al. Game theoretic approach for predictive lane-changing and car-following control[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 73-92.
7 Kang K, Rakha H A. Game theoretical approach to model decision making for merging maneuvers at freeway on-ramps[J]. Transportation Research Record: Journal of the Transportation Research Board, 2017, 2623(1): 19-28.
8 Ali Y, Zheng Z, Haque M M, et al. A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 220-242.
9 Lin D, Li L, Jabari S E. Pay to change lanes: a cooperative lane-changing strategy for connected/automated driving[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 550-564.
10 Nakata M, Yamauchi A, Tanimoto J, et al. Dilemma game structure hidden in traffic flow at a bottleneck due to a 2 into 1 lane junction[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(23): 5353-5361.
11 Hidas P. Modelling vehicle interactions in microscopic simulation of merging and weaving[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62.
12 Arbis D, Dixit V V. Game theoretic model for lane changing: incorporating conflict risks[J]. Accident Analysis & Prevention, 2019, 125: 158-164.
13 Montanino M, Punzo V. Making NGSIM data usable for studies on traffic flow theory[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2390(1): 99-111.
14 蔺湘然. 基于NGSIM数据的车道级车辆换道策略研究[J]. 综合运输,2019, 41(4): 120-126.
Lin Xiang-ran. Lane-level vehicle lane change strategy based on NGSIM data[J]. China Transportation Review,2019, 41(4): 120-126.
15 曾小华,宋美洁,宋大凤,等. 基于车联网信息的公交客车行驶工况数据处理方法[J]. 吉林大学学报:工学版, 2021, 51(5): 1692-1699.
Zeng Xiao-hua, Song Mei-jie, Song Da-feng, et al. Data processing method of bus driving condition based on internet of vehicles information[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1692-1699.
[1] 王菁,万峰,董春娇,邵春福. 城市轨道交通站点吸引范围及强度建模[J]. 吉林大学学报(工学版), 2023, 53(2): 439-447.
[2] 马敏,胡大伟,舒兰,马壮林. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
[3] 方松,马健霄,李根,沈玲宏,徐楚博. 城市快速路右侧车道移动作业区行车风险分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1786-1791.
[4] 宋现敏,杨舒天,刘明鑫,李志慧. 站点间公交行程时间波动特性及预测方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1792-1799.
[5] 张玮,张树培,罗崇恩,张生,王国林. 智能汽车紧急工况避撞轨迹规划[J]. 吉林大学学报(工学版), 2022, 52(7): 1515-1523.
[6] 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374.
[7] 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323.
[8] 徐洪峰,陈虹瑾,张栋,陆千惠,安娜,耿现彩. 面向网联汽车环境的单点全感应式信号配时技术[J]. 吉林大学学报(工学版), 2022, 52(6): 1324-1336.
[9] 盖松雪,曾小清,岳晓园,袁子豪. 基于用户-系统双层优化算法的车位引导模型[J]. 吉林大学学报(工学版), 2022, 52(6): 1344-1352.
[10] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[11] 冯天军,孙学路,黄家盛,田秀娟,宋现敏. 基于三种过街方式的两相位信号交叉口延误[J]. 吉林大学学报(工学版), 2022, 52(3): 550-556.
[12] 李兴华,冯飞宇,成诚,王洧,唐鹏程. 网约拼车服务选择偏好分析及建模[J]. 吉林大学学报(工学版), 2022, 52(3): 578-584.
[13] 尹超英,邵春福,黄兆国,王晓全,王晟由. 基于梯度提升决策树的多尺度建成环境对小汽车拥有的影响[J]. 吉林大学学报(工学版), 2022, 52(3): 572-577.
[14] 贾洪飞,邵子函,杨丽丽. 终点不确定条件下网约车合乘匹配模型及算法[J]. 吉林大学学报(工学版), 2022, 52(3): 564-571.
[15] 马洁,黄家骏,田俊,董杨慧. 地铁车站换乘通道内乘客疏散的目标决策行为建模[J]. 吉林大学学报(工学版), 2022, 52(11): 2600-2606.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鹏,李元春 . 基于铰链结构的机械臂操作
柔性负载系统建模与控制
[J]. 吉林大学学报(工学版), 2008, 38(02): 444 -0448 .
[2] 刘宗巍,王登峰,姜吉光,梁杰,王世刚 . 用主动噪声控制法改善车内声品质[J]. 吉林大学学报(工学版), 2008, 38(02): 258 -0262 .
[3] 孙万臣,王忠恕,李国良,刘忠长,解方喜,杨继蕊 . 燃料着火性对增压中冷柴油机瞬态工况排放的影响[J]. 吉林大学学报(工学版), 2008, 38(04): 791 -796 .
[4] 董恩增,陈增强,袁著祉 . 基于神经网络PID控制器的混沌系统控制与同步[J]. 吉林大学学报(工学版), 2007, 37(03): 646 -0650 .
[5] 赵丁选,崔功杰,陈宁,张红彦 . 基于BP神经网络的工程车辆四参数自动变速控制[J]. 吉林大学学报(工学版), 2008, 38(05): 1091 -1094 .
[6] 李文平, 周宏, 赵世哲, 林鹏宇. 镝对AZ31合金β相形状、均质化处理时间及单道次最大轧制率的影响[J]. 吉林大学学报(工学版), 2009, 39(04): 941 -944 .
[7] 李幼德,刘巍,李静,赵健,宋大凤,沙宏亮 . 汽车稳定性控制系统硬件在环仿真[J]. 吉林大学学报(工学版), 2007, 37(04): 737 -740 .
[8] 林沂,晏磊,童庆禧 . 针对水下辅助导航相关匹配算法的
特征区最优航迹规划
[J]. 吉林大学学报(工学版), 2008, 38(02): 439 -0443 .
[9] 于多年,邹骥,王登峰,王建勇,温桂金. 重型卡车驾驶室焊点的拓扑优化分析[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 264 -0268 .
[10] 彭亚平,郭英男,黄为钧,谭满志,董磊,王志伟 . 乙醇燃料均质压燃的燃烧循环变动[J]. 吉林大学学报(工学版), 2007, 37(02): 301 -0306 .