吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 1019-1029.doi: 10.13229/j.cnki.jdxbgxb.20210764

• 交通运输工程·土木工程 • 上一篇    

基于V2I通信的交叉口车辆碰撞预警方法

赵睿1(),李云1,胡宏宇2(),高镇海2   

  1. 1.吉林大学 汽车工程学院,长春 130022
    2.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2021-08-07 出版日期:2023-04-01 发布日期:2023-04-20
  • 通讯作者: 胡宏宇 E-mail:rzhao@jlu.edu.cn;huhongyu@jlu.edu.cn
  • 作者简介:赵睿(1986-),女,讲师,博士.研究方向:自动驾驶主动安全.E-mail:rzhao@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52202494);吉林省自然科学基金项目(20210101064JC)

Vehicle collision warning method at intersection based on V2I communication

Rui ZHAO1(),Yun LI1,Hong-yu HU2(),Zhen-hai GAO2   

  1. 1.College of Automotive Engineering,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2021-08-07 Online:2023-04-01 Published:2023-04-20
  • Contact: Hong-yu HU E-mail:rzhao@jlu.edu.cn;huhongyu@jlu.edu.cn

摘要:

面向交通事故高发比例的无信号交叉口场景,提出了一种基于V2I通信的车辆碰撞预警方法,以保障行车安全。首先,提出路段与冲突区域匹配方法,筛选存在碰撞风险的车辆与冲突区域;在此基础上,提出两级冗余碰撞预警方法,包括用于车辆进入交叉口前的一级动态碰撞距离检测(DDTC)算法以及车辆进入交叉口后的二级圆形区域碰撞检测(CATC)算法。该方法通过网联信息弥补自车感知局限性,通过冲突区域匹配与安全距离过滤提高检测效率,通过动态距离差阈值设置提高检测准确率。基于NHTSA交叉口场景集的测试结果表明,该方法与具代表性的时间差法与距离差法相比,漏报率分别降低了约16%和6%,误报率分别降低了约88%和48%,检测时间均降低了约74%,具备更高的准确性和高效性。

关键词: 车辆工程, 碰撞预警, 车辆与基础设施互联, 道路交叉口, 动态距离阈值

Abstract:

Facing the unsignalized intersection scenario with a high incidence of traffic accidents, a vehicle collision warning method based on V2I communication is proposed to ensure driving safety. First, a method for matching road segments and conflict areas is proposed to screen vehicles that are at risk of collision and the corresponding conflict areas. On this basis, a two-level redundant intersection collision warning method is proposed, including the Dynamic Distance to Collision (DDTC) algorithm, which is used to perform first-level collision warning before the vehicle enters the intersection, as well as the Circular Area to Collision (CATC) algorithm, which is used for secondary collision warning after the vehicle enters the intersection. This method compensates for the limitations of self-vehicle perception through networked information, improves detection efficiency through conflict area matching and safe distance filtering, and improves detection accuracy through dynamic distance difference threshold setting. The test results based on the NHTSA intersection scene set show that compared with the representative Time to Collision method and Time to Distance method, the false negative rate is reduced by 16% and 6%, and the false positive rate is reduced by 88% and 48%, respectively, and the detection time is reduced by about 74%, with higher accuracy and efficiency.

Key words: vehicle engineering, collision warning, vehicle-to-infrastructure, intersection, dynamic distance threshold

中图分类号: 

  • U27

图1

基于V2I通信的交叉口车辆碰撞预警方法流程描述"

图2

交叉口周边道路区域示意图"

图3

交叉口冲突区域示意图"

表1

车辆行驶路段信息和预计转向信息到冲突区域的映射"

主车辅车冲突区域
直行直行IV
直行右转-
直行左转I或IV
直行掉头-
右转直行IV
右转右转-
右转左转IV
右转掉头-
左转直行IV
左转右转-
左转左转I或IV
左转掉头II
掉头直行III或IV
掉头右转III
掉头左转III或IV
掉头掉头III

图4

车辆通过冲突区域IV示意"

图5

车辆左转通过冲突区域IV"

图6

车辆左转通过冲突区域I示意"

图7

车辆左转通过冲突区域I转角"

图8

车辆左转通过冲突区域II"

图9

车辆掉头通过冲突区域III示意"

图10

圆形区域碰撞检测示意"

图11

NHTSA道路交叉口碰撞避免系统测试场景"

表2

NHTSA道路交叉口场景设置"

场景场景描述
ICA?1主车以恒定的速度直行,辅车在与主车垂直的车道以恒定速度直行
ICA?2辅车以恒定速度直行,主车在与主车垂直的车道上以一个小于辅车速度的恒定速度右转
ICA?3辅车以恒定速度直行,主车在与主车垂直的车道上以一个小于辅车速度的恒定速度左转
ICA?6主车以恒定速度直行,辅车在与主车垂直的车道上以恒定的减速度在交叉口前刚好停车
ICA?7辅车以恒定速度直行,主车在与主车垂直的车道上以恒定的减速度在交叉口前刚好停车
ICA?8主车以恒定的速度左转,辅车在与主车平行的车道上以恒定的减速度在交叉口前刚好停车

表3

场景ICA1、ICA-2、ICA-3、ICA-6、ICA-7 and ICA-8初始参数设置"

参数ICA?1ICA?2ICA?3ICA?6ICA?7ICA?8
主车初始速度/(m·h-125±1.322±1.122±1.135±1.835±1.825±1.3
主车转弯速度/(m·h-1-12±1.112±1.1----
主车减速度/g--0.15±0.05-0.15±0.05--0.15±0.1-
辅车初始速度/(m·h-125±1.335±1.835±1.835±1.835±1.825±1.3
辅车减速度/g----0.15±0.1--0.15±0.1
主车距交叉口距离/m56±5.649±4.949±4.9---
辅车距交叉口距离/m56±5.678±7.878±7.8---

表4

ICA-1、ICA-2、ICA-3测试结果"

性 能本文方法TTCDTC
参数组1参数组2参数组3
漏报率(ICA?1)/%000195
漏报率(ICA?2)/%100217
漏报率(ICA?3)/%100107
时效性/s1.31/4.931.57/4.911.31/6.18
时效提升率/%73.4268.0278.80

表5

ICA-4、ICA-5、ICA-6测试结果 (%)"

误报率本文方法TTCDTC
参数组1参数组2参数组3
ICA?6002410060
ICA?71314229956
ICA?8092210063
1 中华人民共和国国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[J]. 中国统计, 2021, 68(3): 8-22.
National Bureau of statistics of the People's Republic of China. Statistical bulletin of China on national economic and social development in 2020 [J]. China Statistics Press, 2021, 68(3): 8-22.
2 北京智研科信咨询有限公司. 2020年中国道路交通事故发生数量、死亡人数及财产损失情况分析[DB/OL]. [2021-05-27]. .
3 Chen L, Englund C. Cooperative intersection management: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 570-586.
4 Xu C, Zhao W Z, Wang C Y. An integrated threat assessment algorithm for decision-making of autonomous driving vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 2510-2521.
5 Kilicarslan M, Zheng J Y. Predict vehicle collision by TTC from motion using a single video camera[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(2): 522-533.
6 Yang M T, Zheng J Y. On-road collision warning based on multiple FOE segmentation using a dashboard camera[J]. IEEE Transactions on Vehicular Technology, 2015, 64(11): 4974-4984.
7 Arnold E, Fallah S, Oxtoby D, et al. A survey on 3D object detection methods for autonomous driving applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3782-3795.
8 Kim Y, Tak S, Kim J, et al. Identifying major accident scenarios in intersection and evaluation of collision warning system[C]∥IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 2017: 1-6.
9 Jang J A, Choi K, Cho H, et al. A fixed sensor-based intersection collision warning system in vulnerable line-of-sight and/or traffic-violation-prone environment[J]. IEEE transactions on intelligent transportation systems, 2012, 13(4): 1880-1890.
10 吴伟, 马万经, 杨晓光. 车路协同环境下基于路径的信号协调优化模型[J]. 吉林大学学报: 工学版, 2014, 44(2): 343-351.
Wu Wei, Ma Wan-jing, Yang Xiao-guang. Path based signal coordination optimization model in vehicle road coordination environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44 (2): 343-351.
11 Wymeersch H, Campos G, Falcone P, et al. Challenges for cooperative ITS: Improving road safety through the integration of wireless communications, control, and positioning[C]∥2015 International Conference on Computing, Networking and Communications (ICNC). Garden Grove, CA, USA, 2015: 573⁃578.
12 Jackeline R-T, Malikopoulos A A. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1066⁃1077.
13 Wu Q, Xiang Q J, Lu C, et al. Traffic safety evaluation of highway intersection with the use of conflict severity concept[C]∥2008 International Conference on Intelligent Computation Technology and Automation (ICICTA). Changsha, China, 2008: 574-578.
14 Wu Q Q, Zhou S Y, Pan C, et al. Performance analysis of cooperative intersection collision avoidance with C-V2X communications[C]∥IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 2020: 757-762.
15 Kim J H, Kum D S. Threat prediction algorithm based on local path candidates and surrounding vehicle trajectory predictions for automated driving vehicles[C]∥IEEE Intelligent Vehicles Symposium (IV), Seoul, South Korea, 2015: 1220-1225.
16 刘玢艳. 基于V2X道路交叉出口车-车避撞预警算法研究[D]. 重庆: 重庆交通大学机电与车辆工程学院, 2018.
Liu Fen-yan. Research on vehicle to vehicle collision avoidance early warning algorithm based on V2X Road intersection[D]. Chongqing: School of Mechatronics and Vehicle Engineering,Chongqing Jiaotong University, 2018.
17 Miller R, Huang Q F. An adaptive peer-to-peer collision warning system[C]∥IEEE Vehicular Technology Conference, Birmingham, USA, 2002: 317-321.
18 Tan H S, Huang J H. DGPS-Based vehicle-to-vehicle cooperative collision warning: engineering feasibility viewpoints[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 415-428.
19 王勤龙. 基于路侧设备的车辆定位和交叉口防撞预警方法研究[D]. 北京: 北京交通大学,2013.
Wang Qin-long. Research on vehicle positioning and intersection collision warning method based on roadside equipment [D]. Beijing: Beijing Jiaotong University, 2013.
20 Katriniok A, Rosarius B, Mhnen P. Fully distributed model predictive control of connected automated vehicles in intersections: theory and vehicle experiments[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(10): 1-12.
21 Shai S S, Shaked S, Amnon S. On a formal model of safe and scalable self-driving cars[R/OL]. [2018-10-27]. .
22 T/CSAE 53-2017:合作式智能运输系统车用通信系统应用层及应用数据交互标准[M].北京:中国汽车工程学会, 2017.
23 Tiernan T, Toma S, Najm W, et al. Characterization test procedures for intersection collision avoidance systems based on vehicle-to-vehicle communications[M].Washingtong DC: U.S. Department of Transportation, National Highway Traffic Safety Administration, 2015.
[1] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[2] 何科,丁海涛,许男,郭孔辉. 基于摄像头和车道线的增强定位系统[J]. 吉林大学学报(工学版), 2023, 53(3): 663-673.
[3] 朱冰,范天昕,赵健,张培兴,孙宇航. 基于危险边界搜索的自动驾驶系统加速测试方法[J]. 吉林大学学报(工学版), 2023, 53(3): 704-712.
[4] 田彦涛,许富强,王凯歌,郝子绪. 考虑周车信息的自车期望轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 674-681.
[5] 高松,王玉琼,王玉海,徐艺,周英超,王鹏伟. 智能汽车纵横向整体反馈线性化控制[J]. 吉林大学学报(工学版), 2023, 53(3): 735-745.
[6] 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725.
[7] 何科,丁海涛,赖宣淇,许男,郭孔辉. 基于Transformer的轮式里程计误差预测模型[J]. 吉林大学学报(工学版), 2023, 53(3): 653-662.
[8] 刘嫣然,孟庆瑜,郭洪艳,李嘉霖. 图注意力模式下融合高精地图的周车轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 792-801.
[9] 田彦涛,季言实,唱寰,谢波. 深度强化学习智能驾驶汽车增广决策模型[J]. 吉林大学学报(工学版), 2023, 53(3): 682-692.
[10] 张建,刘金波,高原,刘梦可,高振海,杨彬. 基于多模交互的车载传感器定位算法[J]. 吉林大学学报(工学版), 2023, 53(3): 772-780.
[11] 王登峰,陈宏利,那景新,陈鑫. 单双搭接接头经高温老化后的失效对比[J]. 吉林大学学报(工学版), 2023, 53(2): 346-354.
[12] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[13] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[14] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[15] 李丞,景浩,胡广地,刘晓东,冯彪. 适用于质子交换膜燃料电池系统的高阶滑模观测器[J]. 吉林大学学报(工学版), 2022, 52(9): 2203-2212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!