吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2236-2244.doi: 10.13229/j.cnki.jdxbgxb.20211113

• 车辆工程·机械工程 • 上一篇    

液力变矩器空化数值模拟及对性能的影响

柴博森1,2,3(),王广义1,闫东2,朱国仁1(),张进1,吕恒升1   

  1. 1.吉林大学 机械与航空航天工程学院,长春 130022
    2.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    3.中机试验装备股份有限公司,长春 130103
  • 收稿日期:2021-10-28 出版日期:2023-08-01 发布日期:2023-08-21
  • 通讯作者: 朱国仁 E-mail:chaibs2012@jlu.edu.cn;zhugr@jlu.edu.cn
  • 作者简介:柴博森(1984-),男,副教授,博士.研究方向:液力传动与自动变速.E-mail:chaibs2012@jlu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(52075212);吉林省教育厅科学研究项目(JJKH20220977KJ);吉林大学汽车仿真与控制国家重点实验室自由探索项目(ascl-zytsxm-202010);长安大学中央高校基本科研业务费专项项目(300102251511);中国博士后科学基金面上项目(2018M641776);吉林省博士后科研人员择优资助项目(KF204039)

Numerical simulation of cavitation in torque converter and analysis of its influence on performance

Bo-sen CHAI1,2,3(),Guang-yi WANG1,Dong YAN2,Guo-ren ZHU1(),Jin ZHANG1,Heng-sheng LYU1   

  1. 1.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Automobile Simulation and Control,Jilin University,Changchun 130022,China
    3.Sinotest Equipment Co. ,Ltd. ,Changchun 130103,China
  • Received:2021-10-28 Online:2023-08-01 Published:2023-08-21
  • Contact: Guo-ren ZHU E-mail:chaibs2012@jlu.edu.cn;zhugr@jlu.edu.cn

摘要:

基于计算流体动力学,从是否考虑空化两个角度分别数值模拟液力变矩器流场并绘制外特性曲线,通过试验验证仿真结果准确性。为了深入剖析空化对于液力变矩器内/外特性的影响规律,基于Q准则涡识别方法提取三维涡结构特征,分析低速比工况下各叶片表面空化特征动态演化规律,重点研究导轮叶片处空化现象,阐明空化对流场时空结构分布及能量损耗的影响机理。结果表明:①考虑空化的数值模拟与试验结果吻合度高,外特性预测误差在3%以内;②不考虑空化的数值模拟结果中泵轮转矩系数与试验数据误差较大,启动工况下误差在20%以上,仿真结果严重失真;③泵轮转速为2000 r/min时,速比为0.4的工况是空化消失的临界点,随着速比降低,空化现象及其影响越发明显。研究结果可为液力变矩器高精度数值模拟提供理论指导。

关键词: 机械工程, 液力变矩器, 空化, 计算流体动力学, 三维涡, 外特性试验

Abstract:

The flow field in torque converter is numerically simulated based on computational fluid dynamics, and the external characteristic curves are drawn from the two perspectives of whether cavitation is considered or not. The accuracy of simulation results is verified by experiment. In order to deeply analyze the cavitation of torque converter for the influence law of internal and external characteristic, Q criterion of vortex identification method is used to extract the internal three-dimensional vortex structure characteristic. The dynamic evolution law of cavitation characteristic on each blade surface under low-speed ratio conditions is analyzed and clarified, and the cavitation phenomenon on stator blade is mainly studied, and the influence mechanism of cavitation phenomenon on spatiotemporal structure distribution of flow field and energy loss is analyzed and revealed. The results show that: ① The numerical simulation considering cavitation is in good agreement with the experimental results, and the prediction error of external characteristics is less than 3%; ② There is a large error between the torque coefficient of the pump and the test data in the numerical simulation results without considering cavitation, and the error is more than 20% on the braking condition, simulation results are seriously distorted; ③ When pump speed is 2000 r/min, the condition of 0.4 speed ratio is the critical point of cavitation disappearance, with the reduction of the speed ratio, cavitation phenomenon and its influence become more obvious. The research results can provide theoretical guidance for high precision numerical simulation of torque converter.

Key words: mechanical engineering, torque converter, cavitation, computational fluid dynamics, three-dimensional vortex, external characteristic test

中图分类号: 

  • TH137.332

图1

计算模型"

图2

液力变矩器网格模型"

表1

仿真设置"

参数无空化瞬态模型空化稳态模型空化瞬态模型
仿真类型瞬态计算稳态计算瞬态计算
液体密度/(kg·m-3860860860
液体黏度/(Pa·s)0.02580.02580.0258
气体密度/(kg·m-32.12.1
气体黏度/(Pa·s)1.2×10-51.2×10-5
饱和蒸汽压/Pa110110
湍流模型SBESSBESSBES
收敛条件1×10-51×10-41×10-4
交界面模型瞬态转静子法冻结转子法瞬态转静子法
时间步长1×10-31×10-3
步数5001000500
壁面边界无滑移光滑壁面无滑移光滑壁面无滑移光滑壁面

图3

液力变矩器外特性试验台"

表2

外特性试验数据"

转速比i变矩比K效率η泵轮转矩系数λP (10-6 min2·r-2·m-1
0.01.820.005.67
0.11.730.175.83
0.21.630.336.00
0.31.540.456.08
0.41.430.576.16
0.51.330.676.32
0.61.230.736.16
0.71.120.795.43
0.81.030.834.54

图4

有、无空化模型条件下液力特性与试验对比"

图5

有无空化模型下三维涡结构特征"

图6

有、无空化模型条件下导轮涡结构"

图7

制动工况下10%气泡体积分布等势面"

图8

空化随速比演化过程"

图9

不同工况下速度场分布"

图10

不同工况下压力场分布"

图11

不同工况下气泡分布"

图12

不同工况下湍动能分布"

1 初长祥, 马文星. 工程机械液压与液力传动系统(液力卷)[M]. 北京: 化学工业出版社, 2015.
2 刘城,闫清东, 李娟, 等. 高功率密度液力变矩器空化特性研究[J]. 机械工程学报, 2020, 56(24): 147-155.
Liu Cheng, Yan Qing-dong, Li Juan, et al. Investigation on the cavitation characteristics of high power-density torque converter[J]. Journal of Mechanical Engineering, 2020, 56(24):147-155.
3 Robinette D L, Schweitzer J M, Maddock D G, et al. Predicting the onset of cavitation in automotive torque converters-part I: designs with geometric similitude[J]. International Journal of Rotating Machinery, 2008(9): 803940.
4 Robinette D L, Schweitzer J M, Maddock D G, et al. Predicting the onset of cavitation in automotive torque converters-part II: a generalized model[J]. International Journal of Rotating Machinery, 2008(9): 312753.
5 Mekkes J, Anderson C, Narain A. Static pressure measurements and cavitation signatures on the nose of a torque converters stator blades[C]∥Proceedings of 2004 International Symposium on Rotating Machinery, Honolulu, Hawaii, 2004: 49931.
6 Jaewon J, Jaedeuk J, Minsuk C, et al. Effects of cavitation on performance of automotive torque converter[J]. Advances in Mechanical Engineering, 2016, 8(6):1-9.
7 Watanabe S, Otani R, Kunimoto S, et al. Vibration characteristics due to cavitation in stator element of automotive torque converter at stall condition[C]∥American Society of Mechanical Engineers, Fluids Engineering Summer Meeting, Rio Grande, Puerto Rico, 2012: 535-541.
8 Yu D, Korivi V, Attibele P, et al. Torque converter CFD engineering-part Ⅰ: torque ratio and K factor improvement through stator modifications[C]∥SAE 2002 World Congress, Detroit, Michigan, USA, 2002: 14.
9 Yu D, Korivi V, Attibele P, et al. Torque converter CFD engineering part II: performance improvement through core leakage flow and cavitation control [C]∥SAE 2002 World Congress & Exhibition, Detroit, Michigan, USA, 2002: 1272-1285.
10 赵丽丽. 基于CFD的液力变矩器内流场气蚀研究[D]. 太原: 太原科技大学机械工程学院, 2016.
Zhao Li-li. The cavitation research of the flow field in the hydraulic torque converter based on CFD[D]. Taiyuan: College of Mechanical Engineering, Taiyuan University of Science and Technology, 2016.
11 Liu C, Wei W, Yan Q D, et al. Influence of stator blade geometry on torque converter cavitation[J]. Journal of Fluids Engineering Transactions of the Asme, 2018, 140(4): 041102.
12 Liu C, Wei W, Yan Q D, et al. Torque converter capacity improvement through cavitation control by design[J]. Journal of Fluids Engineering: Transactions of the ASME, 2017, 139(4): 041103.
13 Liu C, Wei W, Yan Q D, et al. On the application of passive flow control for cavitation suppression in torque converter stator[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29(1): 204-222.
14 刘春宝, 李静, 卜卫羊,等. 尺度解析湍流模拟方法在液力传动流动数值模拟中的应用[J]. 液压与汽动,2019, 6: 58-62.
Liu Chun-bao, Li Jing, Bu Wei-yang, et al. Application of scale-resolving simulation in hydrodynamic transmission[J]. Chinese Hydraulics & Pneumatics, 2019, 6: 58-62.
15 卢秀泉, 马霖, 马文星, 等. 导轮关键参数对液力变矩偶合器性能的影响[J]. 吉林大学学报: 工学版, 2019, 49(2): 444-450.
Lu Xiu-quan, Ma Lin, Ma Wen-xing, et al. Effects of key parameters of stator on the performance of hydrodynamic coupling torque converter[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 444-450.
16 刘树成, 潘鑫, 魏巍, 等. 基于复杂性测度的变矩器流场仿真湍流模型稳健性分析[J]. 吉林大学学报: 工学版, 2013, 43(3): 613-618.
Liu Shu-cheng, Pan Xin, Wei Wei, et al. Complexity-based robustness analysis of turbulence model in torque converter flow field simulation[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(3): 613-618.
17 Hesse F, Morgans A S. Simulation of wake bimodality behind squareback bluff-bodies using LES[J]. Computers & Fluids, 2021, 223: 104901.
18 Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat & Fluid Flow, 2008, 29(6): 1638-1649.
19 张春泽, 刁伟, 尤建锋, 等. 长短叶片水轮机尾水涡带动态特性数值分析[J]. 华中科技大学学报: 自然科学版, 2017, 45(7): 66-73.
Zhang Chun-ze, Diao Wei, You Jian-feng, et al. Numerical analysis of dynamic characteristics of the vortex rope in a francis turbine with splitter blades[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(7): 66-73.
20 Robinette D, Anderson C, Blough J, et al. Characterizing the effect of automotive torque converter design parameters on the onset of cavitation at stall[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2007, 116(6): 1735-1746.
[1] 陈国辉,徐业银,焦映厚. 考虑偏转的斜齿轮啮合刚度及其振动分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1902-1910.
[2] 陈贵升,罗国焱,李靓雪,黄震,李一. 柴油机颗粒捕集器孔道流场及其高原环境下噪声特性分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1892-1901.
[3] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
[4] 李胜,朱佳,黄德惠,陈存福,费洪庆,丰伟,胡兴军. 空冷中冷器百叶窗翅片结构参数优化[J]. 吉林大学学报(工学版), 2023, 53(4): 998-1006.
[5] 王建,于威,王斌. 高原状态下甲醇替代率对柴油机燃烧与排放的影响[J]. 吉林大学学报(工学版), 2023, 53(4): 954-963.
[6] 于立娟,安阳,何佳龙,李国发,王升旭. 机电装备载荷谱外推技术研究进展及发展趋势[J]. 吉林大学学报(工学版), 2023, 53(4): 941-953.
[7] 朱凌,王秋成. 空间几何约束下新能源汽车驱动系统协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1509-1514.
[8] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[9] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[10] 李国发,王彦博,何佳龙,王继利. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版), 2022, 52(2): 267-279.
[11] 孙健,彭斌,朱兵国. 新型无油涡旋压缩机内部热力学特性和性能测试[J]. 吉林大学学报(工学版), 2022, 52(12): 2778-2787.
[12] 王磊,黄秉汉,丛家慧,回丽,周松,徐永臻. 超声冲击对搅拌摩擦焊缝疲劳性能的影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2542-2548.
[13] 赵文伯,李玉洁,邓俊,李理光,吴志军. 针阀运动规律及其对喷嘴内流和喷雾特性影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2234-2243.
[14] 胡兴军,张靖龙,辛俐,罗雨霏,王靖宇,余天明. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1557-1564.
[15] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!