吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3114-3124.doi: 10.13229/j.cnki.jdxbgxb.20230049

• 车辆工程·机械工程 • 上一篇    

MMH凝胶液滴蒸发与燃烧过程的数值仿真

张帆(),韩宁,杜青,部竞琦,彭志军()   

  1. 天津大学 内燃机燃烧学国家重点实验室,天津 300072
  • 收稿日期:2023-01-22 出版日期:2024-11-01 发布日期:2025-04-24
  • 通讯作者: 彭志军 E-mail:fanzhang_lund@tju.edu.cn;pengzj@tju.edu.cn
  • 作者简介:张帆(1985-),女,副教授.研究方向:湍流燃烧.E-mail: fanzhang_lund@tju.edu.cn
  • 基金资助:
    173重点基础研究项目;国家自然科学基金面上项目(51876139)

Numerical simulation of evaporation and combustion of MMH gel droplets

Fan ZHANG(),Ning HAN,Qing DU,Jing-qi BU,Zhi-jun PENG()   

  1. State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China
  • Received:2023-01-22 Online:2024-11-01 Published:2025-04-24
  • Contact: Zhi-jun PENG E-mail:fanzhang_lund@tju.edu.cn;pengzj@tju.edu.cn

摘要:

本文对耦合甲基肼(MMH)凝胶液滴蒸发模型和MMH/NTO的燃烧动力学机理进行了MMH凝胶液滴蒸发与燃烧过程的数值模拟研究。首先,研究了MMH/NTO的一维对冲火焰和低温零维化学反应动力学过程,发现MMH受热会立刻分解为CH3NNH和H2,MMH/NTO混合物存在两阶段点火现象。进一步在压力为0.5 MPa、温度为1 000 K条件下对MMH/NTO凝胶单液滴的蒸发和燃烧过程进行了一系列仿真模拟,发现了凝胶膜形成、膨胀、破碎过程,以及破碎之后释放的MMH蒸汽与环境中的NTO相互扩散形成非预混的火焰面;同时,液滴半径的变化呈现振荡现象。在凝胶液滴两次破碎时刻之间,由于MMH蒸汽的不断消耗,火焰面处温度也会随之逐渐降低;随着时间的推移,凝胶液滴膨胀-破碎的频率越快,MMH分解放热越频繁,气液交界处温度会随之升高。在一维仿真中,同样发现MMH的两阶段放热过程,NTO的分解吸热导致周围温度略有降低。最后,比较了初始温度和初始压力对燃烧过程的影响,发现环境温度越高,液滴膨胀-破碎频率越快,凝胶液滴的寿命越短;压力增大,火焰面更靠近液滴,与常规液滴蒸发燃烧过程类似。

关键词: 动力机械工程, 凝胶液滴, 液滴蒸发, 液滴燃烧, 甲基肼

Abstract:

The combustion of monomethylhydrazine (MMH)gel droplet under a nitrogen tetroxide (NTO) environment are simulated considering chemical kinetics. At first, the one-dimensional counterflow and zero-dimensional ignition of the MMH/NTO mixture are conducted. The results show that MMH will decompose into CH3NNH and H2 immediately under the current condition, and MMH/NTO mixture has a two-stage ignition. Then, single MMH/NTO droplet combustion under the pressure of 0.5 MPa and temperature of 1 000 K is carried out. The gel formation, expansion and fragmentation, as well as the mutual diffusion of the MMH vapor with NTO and forming a non-premix flame surface are found. Due to the physical process of gel formation, expansion and fragmentation, the temporal evolution of droplet radius is oscillating. Between the sequential gel fragmentation, the temperature at the flame surface will gradually decrease due to the consumption of MMH. With the advance of time, the frequency of gel droplet expansion and break-up increases, leading to a rising in the gas-liquid interface temperature. In addition, it is also found that there are two ignition phenomena for the single MMH gel droplet, and the temperature in the surroundings decreases due to the decomposition of NTO. Finally, the effects of initial temperature and pressure on the combustion process are compared. The higher initial temperature in the surroundings results in the faster the droplet expansion break-up frequency, and the shorter lifetime of the gel droplet. As the pressure increases, the flame surface is closer to the droplet, which is similar to the conventional droplet evaporation combustion process.

Key words: power machinery and engineering, gel droplets, droplet evaporation, droplet combustion, MMH

中图分类号: 

  • V231

图1

凝胶液滴蒸发示意图"

表1

MMH/NTO的化学反应动力学机理[16]"

编号化学反应A/(cm3·mol-1·s-1nE/(kJ·mol-1
1MMH+NO2CH2NNH2+HONO1.96E+28-3.8012 840.00
2CH3NNH2+NO2CH3NNH+HONO2.20E+110.006 700.00
3CH3NNH+NO2CH2N2+HONO1.00E+082.000.00
4MMHCH3NNH+H22.20E+110.006 700.00
5HONO+MNO+OH+M3.26E+130.0018 700.00
6NTO+MNO2+NO2+M8.40E+120.0017 000.00
7NO2NO+O7.60E+18-1.2773 290.00
8NO2+HNO+OH3.50E+140.001 500.00
9CH3N2CH3+N23.00E+060.000.00
10H2+OHH2O+H2.16E+101.510.00
11CH3+OH+CH2O8.43E+130.000.00
12CH2O+OOH+HCO3.90E+130.003 540.00
13HCO+OH+CO23.00E+130.000.00
14CH3+NOHCN+H2O9.60E+130.00288 000.00
15HCN+MH+CN+M1.04E+29-3.30126 600.00
16CN+H2HCN+H2.10E+130.004 710.00
17NH2+HNH+H24.00E+130.003 650.00
18NH+NON2+OH2.16E+13-0.230.00
19H2+OH+OH5.06E+042.676 290.63
20HCN+OHNH2+CO1.60E+022.569 000.00

图2

计算流程图"

图3

凝胶液滴蒸发燃烧仿真结果与实验数据对比"

图4

对冲火焰温度、放热率和组分分布"

图5

零维点火中组分、温度和放热率随时间变化图"

图6

纯蒸发中组分分布和半径变化图"

图7

蒸发和燃烧时温度、组分和放热率分布图"

图8

第一次膨胀过程中不同时刻的温度和组分分布"

图9

不同破碎时刻的温度和组分分布"

图10

不同初始温度下的半径变化"

表2

不同初始条件下的液滴寿命"

环境压力/MPa环境温度/K液滴寿命/ms
0.51 4001.702
0.51 2001.781
0.51 0001.866
0.11 0003.623
1.01 0001.349

图11

不同初始条件下的温度对比"

1 Rapp D, Zurawski R. Characterization of aluminum/RP-1 gel propellant properties[C]∥ 24th Joint Propulsion Conference, Boston, USA, 1988: 2821.
2 Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet[J]. Progress in Propulsion Physics, 2011, 2: 499-518.
3 Natan B, Rahimi S. The status of gel propellants in year 2000[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5: 1-6.
4 杨大力. 凝胶单液滴蒸发燃烧特性试验研究[D]. 长沙: 国防科学技术大学空天科学学院, 2015.
Yang Da-li. Experimental study on evaporative combustion characteristics of gel single droplet[D]. Changsha: School of Aerospace Science, National University of Defense Technology, 2015.
5 Solomon Y, Natan B, Cohen Y. Combustion of gel fuels based on organic gellants[J]. Combustion and Flame, 2009, 156(1): 261-268.
6 Zhou Z F, Yin J, Chen B, et al. Liquid phase model and its coupling interaction with the ambient gas for the droplet heating and evaporation of highly volatile R134a[J]. International Journal of Heat and Mass Transfer, 2021, 166: No.120740.
7 Shen S, Che Z, Wang T, et al. A model for droplet heating and evaporation of water-in-oil emulsified fuel[J]. Fuel, 2020, 266: No.116710.
8 Abramzon B, Sirignano W A. Droplet vaporization model for spray combustion calculations[J]. International Journal of Heat and Mass Transfer, 1989, 32(9): 1605-1618.
9 何博, 何浩波, 丰松江, 等. 液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究[J]. 物理学报, 2012, 61(14): 440-450.
He Bo, He Hao-bo, Feng Song-jiang, et al. Droplet evaporation model and simulation of liquid rocket organogels spray[J]. Acta Physica Sinica, 2012, 61(14): 440-450.
10 张龙. 凝胶单液滴蒸发模型的数值研究[D]. 天津: 天津大学机械工程学院, 2014.
Zhang Long. Numerical study of gel single drop evaporation model[D]. Tianjin: School of Mechanical Engineering, Tianjin University, 2014.
11 强洪夫, 张林涛, 陈福振, 等. 基于 SPH 方法的凝胶燃料单滴微爆过程模拟[J]. 含能材料, 2017, 25(5): 372-378.
Qiang Hong-fu, Zhang Lin-tao, Chen Fu-zhen, et al. Simulation of single drop microdetonation process of gel fuel based on SPH method[J]. Journal of Energetic Materials, 2017, 25(5): 372-378.
12 何博, 聂万胜, 庄逢辰. 偏二甲肼有机凝胶液滴蒸发燃烧模型展望[J]. 化学学报, 2013, 71: 302-307.
He Bo, Nie Wan-sheng, Zhuang Feng-chen. Prospect of evaporative combustion model of undimethylhydrazine organic gel droplet[J]. Acta Chimica Sinica, 2013, 71: 302-307.
13 Catoire L, Swihart M T. Thermochemistry of species produced from monomethylhydrazine in propulsion and space-related applications[J]. Journal of Propulsion and Power, 2002, 18(6): 1242-1253.
14 Catoire L, Chaumeix N, Paillard C. Chemical kinetic model for monomethylhydrazine/nitrogen tetroxide gas phase combustion and hypergolic ignition[J]. Journal of Propulsion and Power, 2004, 20(1): 87-92.
15 巴延涛, 侯凌云, 毛晓芳, 等. 甲基肼/四氧化二氮反应化学动力学模型构建及分析[J]. 物理化学学报, 2014, 30(6): 1042-1048.
Ba Yan-tao, Hou Ling-yun, Mao Xiao-fang, et al. Construction and analysis of chemical kinetics model of methylhydrazine/nitrous oxide reaction[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1042-1048.
16 Hou L, Fu P, Ba Y. Chemical mechanism of MMH/NTO and simulation in a small liquid rocket engine[J]. Combustion Science and Technology, 2019, 191(12): 2208-2225.
17 Rao P M, Raghavan V, Velusamy K, et al. Modeling of quasi-steady sodium droplet combustion in convective environment[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 734-743.
18 Chen W, Gao R, Sun J, et al. Modeling of an isolated liquid hydrogen droplet evaporation and combustion[J]. Cryogenics, 2018, 96: 151-158.
19 Higham D J, Higham N J. MATLAB Guide[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016.
20 Goodwin D G, Moffat H K, Speth R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[J]. Cantera, 2023, 3: No.8137090.
21 Stephen R T. 燃烧学导论:概念与应用[M]. 姚强,李水清,王宇,译.3版.北京: 清华大学出版社, 2015.
22 聂万胜, 何博, 苏凌宇, 等. 有机凝胶偏二甲肼液滴着火燃烧特性及影响因素实验研究[J]. 实验流体力学, 2013, 27(4): 23-31.
Nie Wan-sheng, He Bo, Su Ling-yu, et al. Experimental study on combustion characteristics and influencing factors of droplet of undimethylhydrazine organic gel[J]. Experimental Fluid Mechanics, 2013, 27(4): 23-31.
23 Kee R J, Miller J A, Jefferson T H. Chemkin: a general-purpose, problem-independent, transportable, fortran chemical kinetics code package[R]. Albuquerque: Sandia National Laboratories, 1980.
[1] 商蕾,杨萍,杨祥国,潘建欣,杨军,张梦如. 基于APSO-BP-PID控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2024, 54(9): 2401-2413.
[2] 陈贵升,罗国焱,李靓雪,黄震,李一. 柴油机颗粒捕集器孔道流场及其高原环境下噪声特性分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1892-1901.
[3] 王建,于威,王斌. 高原状态下甲醇替代率对柴油机燃烧与排放的影响[J]. 吉林大学学报(工学版), 2023, 53(4): 954-963.
[4] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[5] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[6] 赵文伯,李玉洁,邓俊,李理光,吴志军. 针阀运动规律及其对喷嘴内流和喷雾特性影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2234-2243.
[7] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
[8] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[9] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[10] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[11] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[12] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[13] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[14] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[15] 胡潇宇,李国祥,白书战,孙柯,李思远. 考虑加热面粗糙度和材料的沸腾换热修正模型[J]. 吉林大学学报(工学版), 2019, 49(6): 1945-1950.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!